Loading…

Influences of guide-tube and bluff-body on advanced atmospheric pressure plasma source for single-crystalline polymer nanoparticle synthesis at low temperature

The use of a guide-tube and bluff-body with an advanced atmospheric pressure plasma source is investigated for the low-temperature synthesis of single-crystalline high-density plasma polymerized pyrrole (pPPy) nano-materials on glass and flexible substrates. Three process parameters, including the p...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2017-02, Vol.24 (2)
Main Authors: Kim, Dong Ha, Park, Choon-Sang, Kim, Won Hyun, Shin, Bhum Jae, Hong, Jung Goo, Park, Tae Seon, Seo, Jeong Hyun, Tae, Heung-Sik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of a guide-tube and bluff-body with an advanced atmospheric pressure plasma source is investigated for the low-temperature synthesis of single-crystalline high-density plasma polymerized pyrrole (pPPy) nano-materials on glass and flexible substrates. Three process parameters, including the position of the bluff-body, Ar gas flow rate, and remoteness of the substrate from the intense and broadened plasma, are varied and examined in detail. Plus, for an in-depth understanding of the flow structure development with the guide-tube and bluff-body, various numerical simulations are also conducted using the same geometric conditions as the experiments. As a result, depending on both the position of the bluff-body and the Ar gas flow rate, an intense and broadened plasma as a glow-like discharge was produced in a large area. The production of the glow-like discharge played a significant role in increasing the plasma energy required for full cracking of the monomers in the nucleation region. Furthermore, a remote growth condition was another critical process parameter for minimizing the etching and thermal damage during the plasma polymerization, resulting in single- and poly-crystalline pPPy nanoparticles at a low temperature with the proposed atmospheric pressure plasma jet device.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4975313