Loading…
Immiscible blend morphology after shear and elongation
This work examines the role of shear and extensional strain on immiscible blend morphology, namely domain size, orientation, and co-continuity. The domain size reduces with surface tension similar to what is observed with isolated droplets. The domain size is shown to increase with shear strain due...
Saved in:
Format: | Conference Proceeding |
---|---|
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work examines the role of shear and extensional strain on immiscible blend morphology, namely domain size, orientation, and co-continuity. The domain size reduces with surface tension similar to what is observed with isolated droplets. The domain size is shown to increase with shear strain due to coalescence. Hence the best mixing is found with low shear strains, i.e. low rates of shear and short durations of time. Extensional strain (extrusion draw ratio DR) reduces phase width and thickness with a DR−0.5 dependence, suggesting the transformation to a fibrilar morphology. The critical draw ratio for morphology transformation is approximately 7, in agreement with observations by Grace for droplet breakup in elongation. Fibrilar morphology is also consistent with a large increase in strain-to-break in the drawn film and with observed creep and optical scattering behavior. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4918470 |