Loading…
Integrable semi-discretization of a multi-component short pulse equation
In the present paper, we mainly study the integrable semi-discretization of a multi-component short pulse equation. First, we briefly review the bilinear equations for a multi-component short pulse equation proposed by Matsuno [J. Math. Phys. 52, 123702 (2011)] and reaffirm its N-soliton solution in...
Saved in:
Published in: | Journal of mathematical physics 2015-04, Vol.56 (4), p.1 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present paper, we mainly study the integrable semi-discretization of a multi-component short pulse equation. First, we briefly review the bilinear equations for a multi-component short pulse equation proposed by Matsuno [J. Math. Phys. 52, 123702 (2011)] and reaffirm its N-soliton solution in terms of pfaffians. Then by using a Bäcklund transformation of the bilinear equations and defining a discrete hodograph (reciprocal) transformation, an integrable semi-discrete multi-component short pulse equation is constructed. Meanwhile, its N-soliton solution in terms of pfaffians is also proved. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4916895 |