Loading…

Integrable semi-discretization of a multi-component short pulse equation

In the present paper, we mainly study the integrable semi-discretization of a multi-component short pulse equation. First, we briefly review the bilinear equations for a multi-component short pulse equation proposed by Matsuno [J. Math. Phys. 52, 123702 (2011)] and reaffirm its N-soliton solution in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2015-04, Vol.56 (4), p.1
Main Authors: Feng, Bao-Feng, Maruno, Ken-ichi, Ohta, Yasuhiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present paper, we mainly study the integrable semi-discretization of a multi-component short pulse equation. First, we briefly review the bilinear equations for a multi-component short pulse equation proposed by Matsuno [J. Math. Phys. 52, 123702 (2011)] and reaffirm its N-soliton solution in terms of pfaffians. Then by using a Bäcklund transformation of the bilinear equations and defining a discrete hodograph (reciprocal) transformation, an integrable semi-discrete multi-component short pulse equation is constructed. Meanwhile, its N-soliton solution in terms of pfaffians is also proved.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4916895