Loading…
Analyticity of Nekrasov Partition Functions
We prove that the K -theoretic Nekrasov instanton partition functions have a positive radius of convergence in the instanton counting parameter and are holomorphic functions of the Coulomb parameters in a suitable domain. We discuss the implications for the AGT correspondence and the analyticity of...
Saved in:
Published in: | Communications in mathematical physics 2018-12, Vol.364 (2), p.683-718 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that the
K
-theoretic Nekrasov instanton partition functions have a positive radius of convergence in the instanton counting parameter and are holomorphic functions of the Coulomb parameters in a suitable domain. We discuss the implications for the AGT correspondence and the analyticity of the norm of Gaiotto states for the deformed Virasoro algebra. The proof is based on random matrix techniques and relies on an integral representation of the partition function, due to Moore, Nekrasov, and Shatashvili, which we also prove. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-018-3270-1 |