Loading…
Geometric scalar theory of gravity beyond spherical symmetry
We construct several exact solutions for a recently proposed geometric scalar theory of gravity. We focus on a class of axisymmetric geometries and a big-bang-like geometry and discuss their Lorentzian character. The axisymmetric solutions are parametrized by an integer angular momentum l. The l=0 (...
Saved in:
Published in: | Physical review. D 2017-04, Vol.95 (8), Article 084017 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We construct several exact solutions for a recently proposed geometric scalar theory of gravity. We focus on a class of axisymmetric geometries and a big-bang-like geometry and discuss their Lorentzian character. The axisymmetric solutions are parametrized by an integer angular momentum l. The l=0 (spherical) case gives rise to the Schwarzschild geometry. The other solutions have naked singular surfaces. While not a priori obvious, all the solutions that we present here are globally Lorentzian. The Lorentzian signature appears to be a robust property of the disformal geometries solving the vacuum geometric scalar theory of gravity equations. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.95.084017 |