Loading…
Integer Polynomial Optimization in Fixed Dimension
We classify, according to their computational complexity, integer optimization problems whose constraints and objective functions are polynomials with integer coefficients, and the number of variables is fixed. For the optimization of an integer polynomial over the lattice points of a convex polytop...
Saved in:
Published in: | Mathematics of operations research 2006-02, Vol.31 (1), p.147-153 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We classify, according to their computational complexity, integer optimization problems whose constraints and objective functions are polynomials with integer coefficients, and the number of variables is fixed. For the optimization of an integer polynomial over the lattice points of a convex polytope, we show an algorithm to compute lower and upper bounds for the optimal value. For polynomials that are nonnegative over the polytope, these sequences of bounds lead to a fully polynomial-time approximation scheme for the optimization problem. |
---|---|
ISSN: | 0364-765X 1526-5471 |
DOI: | 10.1287/moor.1050.0169 |