Loading…

Development and mechanical characterization of a polypropylene (pp) composite with grinding sludge as fiber

The search for alternative materials that provide reduced costs in manufacturing processes, and the need of to recycle materials normally disposable, it has aroused great interest and much research, with regard to reduction of material consumption due to its high cost and scarcity. Within this focus...

Full description

Saved in:
Bibliographic Details
Main Authors: Rodrigues, D A, Oliveira A S M, Specht, R F, Santana, R M
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The search for alternative materials that provide reduced costs in manufacturing processes, and the need of to recycle materials normally disposable, it has aroused great interest and much research, with regard to reduction of material consumption due to its high cost and scarcity. Within this focus, this work aims to characterize a thermoplastic composite, whose polymer matrix is polypropylene (PP), and as disperse phase "grinding sludge, GS" from the various machining processes for grinding. After drying and sieving the GS and its subsequent mixing with the thermoplastic resin to prepare the PP/GS composites formulated were 80/20, 70/30, 60/40 w/w. The composite was injected into an injection mold in the form specimen test. The specimens followed the ASTM D638 and ASTM D256 for tensile and impact respectively. Three processing parameters were varied: the content of GS, temperature and injection rate. Each of these variables has three levels: L (low), M (medium) and H (high), making all possible combinations, totaling 27 processing conditions. The experimental conditions followed a statistical design obtained with the software Statgraphics Centurion, where the effects of variables are studied according to their statistical significance. An analysis of MEV and EDS was performed to obtain the characteristics of the "grinding sludge" (geometry and composition). Despite having been sifted, the geometry of the GS was still very rough, with varied shapes and sizes, and even made up a small percentage of abrasive grains. The variable that most influenced the mechanical properties was the content of particulate GS. The values obtained for the maximum tensile strength not behaved in descending order as expected, this may be the effect of small amount of samples tested. The results of the mechanical properties showed that for the elasticity modulus increased with increasing of GS; the values of elongation and impact strength decreased with increasing of GS.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4873829