Loading…
Compact localized states and flat-band generators in one dimension
Flat bands (FB) are strictly dispersionless bands in the Bloch spectrum of a periodic lattice Hamiltonian, recently observed in a variety of photonic and dissipative condensate networks. FB Hamiltonians are fine-tuned networks, still lacking a comprehensive generating principle. We introduce a FB ge...
Saved in:
Published in: | Physical review. B 2017-03, Vol.95 (11), p.115135, Article 115135 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Flat bands (FB) are strictly dispersionless bands in the Bloch spectrum of a periodic lattice Hamiltonian, recently observed in a variety of photonic and dissipative condensate networks. FB Hamiltonians are fine-tuned networks, still lacking a comprehensive generating principle. We introduce a FB generator based on local network properties. We classify FB networks through the properties of compact localized states (CLS) which are exact FB eigenstates and occupy U unit cells. We obtain the complete two-parameter FB family of two-band d=1 networks with nearest unit cell interaction and U=2. We discover a novel high symmetry sawtooth chain with identical hoppings in a transverse dc field, easily accessible in experiments. Our results pave the way towards a complete description of FBs in networks with more bands and in higher dimensions. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.95.115135 |