Loading…

Pseudo-impulsive solutions of the forward-speed diffraction problem using a high-order finite-difference method

This paper considers pseudo-impulsive numerical solutions to the forward-speed diffraction problem, as derived from classical linearized potential flow theory. Both head- and following-seas cases are treated. Fourth-order finite-difference approximations are applied on overlapping, boundary-fitted g...

Full description

Saved in:
Bibliographic Details
Published in:Applied ocean research 2018-11, Vol.80, p.197-219
Main Authors: Amini-Afshar, Mostafa, Bingham, Harry B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper considers pseudo-impulsive numerical solutions to the forward-speed diffraction problem, as derived from classical linearized potential flow theory. Both head- and following-seas cases are treated. Fourth-order finite-difference approximations are applied on overlapping, boundary-fitted grids to obtain solutions using both the Neumann-Kelvin and the double-body flow linearizations of the problem. A method for computing the pseudo-impulsive incident wave forcing in finite water depth using the Fast Fourier Transform (FFT) is presented. The pseudo-impulsive scattering solution is then Fourier transformed into the frequency domain to obtain the wave excitation forces and the body motion response. The calculations are validated against reference solutions for a submerged circular cylinder and a submerged sphere. Calculations are also made for a modern bulk carrier, showing good agreement with experimental measurements.
ISSN:0141-1187
1879-1549
DOI:10.1016/j.apor.2018.08.017