Loading…
Solving joint chance constrained problems using regularization and Benders’ decomposition
We consider stochastic programs with joint chance constraints with discrete random distribution. We reformulate the problem by adding auxiliary variables. Since the resulting problem has a non-regular feasible set, we regularize it by increasing the feasible set. We solve the regularized problem by...
Saved in:
Published in: | Annals of operations research 2020-09, Vol.292 (2), p.683-709 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider stochastic programs with joint chance constraints with discrete random distribution. We reformulate the problem by adding auxiliary variables. Since the resulting problem has a non-regular feasible set, we regularize it by increasing the feasible set. We solve the regularized problem by iteratively solving a master problem while adding Benders’ cuts from a slave problem. Since the number of variables of the slave problem equals to the number of scenarios, we express its solution in a closed form. We show convergence properties of the solutions. On a gas network design problem, we perform a numerical study by increasing the number of scenarios and compare our solution with a solution obtained by solving the same problem with the continuous distribution. |
---|---|
ISSN: | 0254-5330 1572-9338 |
DOI: | 10.1007/s10479-018-3091-9 |