Loading…

Solving joint chance constrained problems using regularization and Benders’ decomposition

We consider stochastic programs with joint chance constraints with discrete random distribution. We reformulate the problem by adding auxiliary variables. Since the resulting problem has a non-regular feasible set, we regularize it by increasing the feasible set. We solve the regularized problem by...

Full description

Saved in:
Bibliographic Details
Published in:Annals of operations research 2020-09, Vol.292 (2), p.683-709
Main Authors: Adam, Lukáš, Branda, Martin, Heitsch, Holger, Henrion, René
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-5597dc6979bed7b71aee4194a11a2547859bd276aad521e5f477f754104f3f0e3
cites cdi_FETCH-LOGICAL-c420t-5597dc6979bed7b71aee4194a11a2547859bd276aad521e5f477f754104f3f0e3
container_end_page 709
container_issue 2
container_start_page 683
container_title Annals of operations research
container_volume 292
creator Adam, Lukáš
Branda, Martin
Heitsch, Holger
Henrion, René
description We consider stochastic programs with joint chance constraints with discrete random distribution. We reformulate the problem by adding auxiliary variables. Since the resulting problem has a non-regular feasible set, we regularize it by increasing the feasible set. We solve the regularized problem by iteratively solving a master problem while adding Benders’ cuts from a slave problem. Since the number of variables of the slave problem equals to the number of scenarios, we express its solution in a closed form. We show convergence properties of the solutions. On a gas network design problem, we perform a numerical study by increasing the number of scenarios and compare our solution with a solution obtained by solving the same problem with the continuous distribution.
doi_str_mv 10.1007/s10479-018-3091-9
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2131036285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A633119426</galeid><sourcerecordid>A633119426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-5597dc6979bed7b71aee4194a11a2547859bd276aad521e5f477f754104f3f0e3</originalsourceid><addsrcrecordid>eNp1kc1q3TAQhUVpobdJH6A7Q7d1oh_LspZp6B8Eumi66kLI0tjRxZZuNXahWfU1-np9ksjcQhpoEEggfUczZw4hrxg9Y5Sqc2S0UbqmrKsF1azWT8iOScVrLUT3lOwol00thaDPyQvEPaWUsU7uyLcvafoR4ljtU4hL5W5sdFC5FHHJNkTw1SGnfoIZqxU3LsO4TjaHW7uEFCsbffUWooeMf379rjy4NB8Shu3xlDwb7ITw8u95Qr6-f3d9-bG--vzh0-XFVe0aTpdaSq28a7XSPXjVK2YBGqYby5gtXatO6t5z1VrrJWcgh0apQcmmOB7EQEGckNfHf0ur31fAxezTmmMpaTgTjIqWd_KeGu0EJsQhFYduDujMRSsEKxV5W6iz_1BleZhDGQsModw_ELz5R9BvQwIsG4bxZsHRrogPcXbEXU6IGQZzyGG2-adh1GxJmmOSpiRptiSNLhp-1GBh4wj53t_jojvW0KC3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131036285</pqid></control><display><type>article</type><title>Solving joint chance constrained problems using regularization and Benders’ decomposition</title><source>ABI/INFORM Collection</source><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Springer Link</source><creator>Adam, Lukáš ; Branda, Martin ; Heitsch, Holger ; Henrion, René</creator><creatorcontrib>Adam, Lukáš ; Branda, Martin ; Heitsch, Holger ; Henrion, René</creatorcontrib><description>We consider stochastic programs with joint chance constraints with discrete random distribution. We reformulate the problem by adding auxiliary variables. Since the resulting problem has a non-regular feasible set, we regularize it by increasing the feasible set. We solve the regularized problem by iteratively solving a master problem while adding Benders’ cuts from a slave problem. Since the number of variables of the slave problem equals to the number of scenarios, we express its solution in a closed form. We show convergence properties of the solutions. On a gas network design problem, we perform a numerical study by increasing the number of scenarios and compare our solution with a solution obtained by solving the same problem with the continuous distribution.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-018-3091-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Benders decomposition ; Business and Management ; Combinatorics ; Decomposition method ; Learning models (Stochastic processes) ; Operations research ; Operations Research/Decision Theory ; Regularization ; S.I.: Stochastic Optimization:Theory&amp;Applications in Memory of M.Bertocchi ; Stochastic models ; Theory of Computation ; Variables</subject><ispartof>Annals of operations research, 2020-09, Vol.292 (2), p.683-709</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-5597dc6979bed7b71aee4194a11a2547859bd276aad521e5f477f754104f3f0e3</citedby><cites>FETCH-LOGICAL-c420t-5597dc6979bed7b71aee4194a11a2547859bd276aad521e5f477f754104f3f0e3</cites><orcidid>0000-0001-8748-4308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2131036285/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2131036285?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Adam, Lukáš</creatorcontrib><creatorcontrib>Branda, Martin</creatorcontrib><creatorcontrib>Heitsch, Holger</creatorcontrib><creatorcontrib>Henrion, René</creatorcontrib><title>Solving joint chance constrained problems using regularization and Benders’ decomposition</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>We consider stochastic programs with joint chance constraints with discrete random distribution. We reformulate the problem by adding auxiliary variables. Since the resulting problem has a non-regular feasible set, we regularize it by increasing the feasible set. We solve the regularized problem by iteratively solving a master problem while adding Benders’ cuts from a slave problem. Since the number of variables of the slave problem equals to the number of scenarios, we express its solution in a closed form. We show convergence properties of the solutions. On a gas network design problem, we perform a numerical study by increasing the number of scenarios and compare our solution with a solution obtained by solving the same problem with the continuous distribution.</description><subject>Benders decomposition</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Decomposition method</subject><subject>Learning models (Stochastic processes)</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Regularization</subject><subject>S.I.: Stochastic Optimization:Theory&amp;Applications in Memory of M.Bertocchi</subject><subject>Stochastic models</subject><subject>Theory of Computation</subject><subject>Variables</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kc1q3TAQhUVpobdJH6A7Q7d1oh_LspZp6B8Eumi66kLI0tjRxZZuNXahWfU1-np9ksjcQhpoEEggfUczZw4hrxg9Y5Sqc2S0UbqmrKsF1azWT8iOScVrLUT3lOwol00thaDPyQvEPaWUsU7uyLcvafoR4ljtU4hL5W5sdFC5FHHJNkTw1SGnfoIZqxU3LsO4TjaHW7uEFCsbffUWooeMf379rjy4NB8Shu3xlDwb7ITw8u95Qr6-f3d9-bG--vzh0-XFVe0aTpdaSq28a7XSPXjVK2YBGqYby5gtXatO6t5z1VrrJWcgh0apQcmmOB7EQEGckNfHf0ur31fAxezTmmMpaTgTjIqWd_KeGu0EJsQhFYduDujMRSsEKxV5W6iz_1BleZhDGQsModw_ELz5R9BvQwIsG4bxZsHRrogPcXbEXU6IGQZzyGG2-adh1GxJmmOSpiRptiSNLhp-1GBh4wj53t_jojvW0KC3</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Adam, Lukáš</creator><creator>Branda, Martin</creator><creator>Heitsch, Holger</creator><creator>Henrion, René</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8748-4308</orcidid></search><sort><creationdate>20200901</creationdate><title>Solving joint chance constrained problems using regularization and Benders’ decomposition</title><author>Adam, Lukáš ; Branda, Martin ; Heitsch, Holger ; Henrion, René</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-5597dc6979bed7b71aee4194a11a2547859bd276aad521e5f477f754104f3f0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benders decomposition</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Decomposition method</topic><topic>Learning models (Stochastic processes)</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Regularization</topic><topic>S.I.: Stochastic Optimization:Theory&amp;Applications in Memory of M.Bertocchi</topic><topic>Stochastic models</topic><topic>Theory of Computation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adam, Lukáš</creatorcontrib><creatorcontrib>Branda, Martin</creatorcontrib><creatorcontrib>Heitsch, Holger</creatorcontrib><creatorcontrib>Henrion, René</creatorcontrib><collection>CrossRef</collection><collection>Gale_Business Insights: Global</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adam, Lukáš</au><au>Branda, Martin</au><au>Heitsch, Holger</au><au>Henrion, René</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving joint chance constrained problems using regularization and Benders’ decomposition</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>292</volume><issue>2</issue><spage>683</spage><epage>709</epage><pages>683-709</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>We consider stochastic programs with joint chance constraints with discrete random distribution. We reformulate the problem by adding auxiliary variables. Since the resulting problem has a non-regular feasible set, we regularize it by increasing the feasible set. We solve the regularized problem by iteratively solving a master problem while adding Benders’ cuts from a slave problem. Since the number of variables of the slave problem equals to the number of scenarios, we express its solution in a closed form. We show convergence properties of the solutions. On a gas network design problem, we perform a numerical study by increasing the number of scenarios and compare our solution with a solution obtained by solving the same problem with the continuous distribution.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-018-3091-9</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-8748-4308</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2020-09, Vol.292 (2), p.683-709
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_journals_2131036285
source ABI/INFORM Collection; Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Springer Link
subjects Benders decomposition
Business and Management
Combinatorics
Decomposition method
Learning models (Stochastic processes)
Operations research
Operations Research/Decision Theory
Regularization
S.I.: Stochastic Optimization:Theory&Applications in Memory of M.Bertocchi
Stochastic models
Theory of Computation
Variables
title Solving joint chance constrained problems using regularization and Benders’ decomposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A45%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20joint%20chance%20constrained%20problems%20using%20regularization%20and%20Benders%E2%80%99%20decomposition&rft.jtitle=Annals%20of%20operations%20research&rft.au=Adam,%20Luk%C3%A1%C5%A1&rft.date=2020-09-01&rft.volume=292&rft.issue=2&rft.spage=683&rft.epage=709&rft.pages=683-709&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-018-3091-9&rft_dat=%3Cgale_proqu%3EA633119426%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-5597dc6979bed7b71aee4194a11a2547859bd276aad521e5f477f754104f3f0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2131036285&rft_id=info:pmid/&rft_galeid=A633119426&rfr_iscdi=true