Loading…

Realization of novel constant rate of kinetic energy change (CRKEC) supersonic ejector

Ejectors invariably convert momentum and kinetic energy of incoming fluids into enthalpy and hence pressure. Since ejectors are primarily viewed as energy exchange devices, it would be appropriate to design an ejector with its geometry being a function of the rate of energy change. This would shift...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2018-12, Vol.164, p.694-706
Main Authors: Kumar, Virendra, Singhal, Gaurav, Subbarao, P.M.V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ejectors invariably convert momentum and kinetic energy of incoming fluids into enthalpy and hence pressure. Since ejectors are primarily viewed as energy exchange devices, it would be appropriate to design an ejector with its geometry being a function of the rate of energy change. This would shift ejector design approach from conventional geometry based one to that of flow physics-based approach. Hence, the paper presents a unique approach to evolving ejector design considering it primarily to be a function energy change within the system, specifically being constant rate of kinetic energy change (CRKEC). This approach has benefits in terms of mitigating the occurrence of thermodynamic shock, which is a major irreversibility that besets conventional ejector systems. A 1-D gas dynamic model including frictional effects for a more realistic design has been developed for estimating supersonic ejector geometry based on CRKEC approach. The model has been used to predict the geometry of a supersonic air ejector for typical input parameters viz., entrainment ratio (ω) ∼0.53, recovery ratio(ζ) ∼1.4, primary stagnation pressure(Pop) ∼5.7 bar, secondary stagnation pressure(Pos) ∼0.7 bar. The results have been verified through detailed numerical analysis using Navier-Stokes system of equations with turbulence in a 2-D axi-symmetric formulation. Also, the experimental results on the developed prototype, which have also been discussed, are observed to be in close agreement with predictions of 1-D gas dynamic model and the numerical studies.
ISSN:0360-5442
1873-6785
DOI:10.1016/j.energy.2018.08.184