Loading…
Multi-objective gearbox design optimization for xEV-axle drives under consideration of package restrictions
In the design process of electric powertrains, consisting of electric machine, gearbox and power electronics, the requirements regarding performance, package and costs are typically set on system level. This imposes that deduction of component requirements is not unique and component properties inte...
Saved in:
Published in: | Forschung im Ingenieurwesen 2018-12, Vol.82 (4), p.361-370 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the design process of electric powertrains, consisting of electric machine, gearbox and power electronics, the requirements regarding performance, package and costs are typically set on system level. This imposes that deduction of component requirements is not unique and component properties interfere with each other. As a component of the powertrain system, the gearbox represents a linking element between the electric machine and drive shafts to the wheels. Through this the available installation space of the gearbox shows manifold characteristics due to multiple possible motor- and power electronics variants as also versatile system installation positions and angles. This space can be utilized by different gearbox variants, which are characterized by gearbox-internal design parameters. They affect gear ratio, configuration of gear wheels, outer shape of the gearbox and therefore the package as well as efficiency and production costs. The high variability of gearbox design parameters and packaging-related aspects lead to a complex problem in the design process.
In this context, the present contribution introduces a gearbox design optimization process to support decision-making in the early development phase. For given load-, lifetime- and package-requirements, the introduced differential-evolution-based process delivers design parameters for shafts, gears, bearings and their arrangement to handle efficiency, package and costs in a multi-objective manner. The results are represented by a Pareto front of gearbox designs variants, from which decision makers are able to choose the best and most suitable trade-off. The new approach is exemplarily demonstrated on a single-speed, two-stage helical gearbox with an integrated differential drive, which represents a common gearbox topology for xEV-axle drives. |
---|---|
ISSN: | 0015-7899 1434-0860 |
DOI: | 10.1007/s10010-018-0278-9 |