Loading…
Infinite measure preserving transformations with Radon MSJ
We introduce concepts of Radon MSJ and Radon disjointness for infinite Radon measure preserving homeomorphisms of the locally compact Cantor space. We construct an uncountable family of pairwise Radon disjoint infinite Chacon like transformations. Every such transformation is Radon strictly ergodic,...
Saved in:
Published in: | Israel journal of mathematics 2018-10, Vol.228 (1), p.21-51 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce concepts of Radon MSJ and Radon disjointness for infinite Radon measure preserving homeomorphisms of the locally compact Cantor space. We construct an uncountable family of pairwise Radon disjoint infinite Chacon like transformations. Every such transformation is Radon strictly ergodic, totally ergodic, asymmetric (not isomorphic to its inverse), has Radon MSJ and possesses Radon joinings whose ergodic components are not joinings. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-018-1746-5 |