Loading…
Relative strongly regular holonomic \({\mathcal{D}}\)-modules and the Riemann-Hilbert correspondence
We introduce the notion of strong regular holonomic \({\mathcal{D}}_{{X\times S}/S}\)-module and we prove that the functor \({\mathrm{RH}}^S\) introduced by T. Monteiro Fernandes and C. Sabbah in [14] takes image in \({\mathsf{D}}^{\mathrm{b}}_{\mathrm{srhol}}({\mathcal{D}}_{{X\times S}/S})\) (compl...
Saved in:
Published in: | arXiv.org 2018-11 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce the notion of strong regular holonomic \({\mathcal{D}}_{{X\times S}/S}\)-module and we prove that the functor \({\mathrm{RH}}^S\) introduced by T. Monteiro Fernandes and C. Sabbah in [14] takes image in \({\mathsf{D}}^{\mathrm{b}}_{\mathrm{srhol}}({\mathcal{D}}_{{X\times S}/S})\) (complexes of \({\mathcal{D}}_{{X\times S}/S}\)-module whose cohomologies are strongly regular). We prove that for \(\dim X=\dim S=1\) the functor solution functor \({}^\mathrm{p}{\mathrm{Sol}}\) restricted to \({\mathsf{D}}^{\mathrm{b}}_{\mathrm{srhol}}({\mathcal{D}}_{{X\times S}/S})\) is an equivalence of categories with quasi-inverse \({\mathrm{RH}}^S\). |
---|---|
ISSN: | 2331-8422 |