Loading…
A Microfiber Knot Incorporating a Tungsten Disulfide Saturable Absorber Based Multi-Wavelength Mode-Locked Erbium-Doped Fiber Laser
A novel multi-wavelength mode-locked Erbium-doped fiber laser with tungsten disulfide (WS2) combined with a microfiber knot is described. This hybrid fiber structure facilitates strong light matter interaction between the saturated absorption of the WS2 material and high optical non-linearity of the...
Saved in:
Published in: | Journal of lightwave technology 2018-12, Vol.36 (23), p.5633-5639 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel multi-wavelength mode-locked Erbium-doped fiber laser with tungsten disulfide (WS2) combined with a microfiber knot is described. This hybrid fiber structure facilitates strong light matter interaction between the saturated absorption of the WS2 material and high optical non-linearity of the microfiber knot. It is demonstrated experimentally that the novel fiber laser works stably in the absence of an external comb filter, with the generation of stable multi-wavelength picosecond pulses. In the multi-wavelength lasing regime, up to seven-wavelength stable mode-locked pulses are obtained using a polarization controller with the pump power at ~250 mW. The pulse period and the pulsewidth are 188.7 ns and 16.3 ps, respectively. In addition, the number of multi-wavelength lasing channels can be changed by simply adjusting the microfiber knot size. Experimental results show the laser to have a stable output over 12-h recording period. The results of this investigation demonstrate that the optical microfiber knot with a WS2 overlay based fiber laser device can operate as a highly nonlinear optical component and a saturable absorber. The proposed multi-wavelength lasing device can therefore be widely used for non-linear and ultrafast photonics and has a number of advantages compared to similar devices using more conventional technologies, including low cost and good stability. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2018.2877583 |