Loading…
Complete molecular scanning of the human Fas gene : mutational analysis and linkage studies in families with Type I diabetes mellitus
Aims/hypothesis. The human Fas gene (FAS) on chromosome 10q24.1 encoding a cell surface receptor involved in apoptosis was evaluated as a candidate susceptibility gene for Type I (insulin-dependent) diabetes mellitus. Apoptosis mediated by Fas is important in maintaining peripheral self-tolerance an...
Saved in:
Published in: | Diabetologia 2000-06, Vol.43 (6), p.800-808 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aims/hypothesis. The human Fas gene (FAS) on chromosome 10q24.1 encoding a cell surface receptor involved in apoptosis was evaluated as a candidate susceptibility gene for Type I (insulin-dependent) diabetes mellitus. Apoptosis mediated by Fas is important in maintaining peripheral self-tolerance and in down-regulating the immune response and could have a role in immune-mediated beta-cell destruction.¶Methods. We did a molecular scan of the entire human FAS (promoter, exons 1-9 including exon-intron boundaries and the 3 [variant prime]UTR) using single strand conformational polymorphism-heteroduplex analysis.¶Results. We identified 15 mutations, of which 11 are new. Of these a g-1194A[arrow right]T and a g-295Ains give rise to alterations of transcription-factor-binding consensus sequences for c-Myb, SP-1 and NF-kB, respectively. A total of 1068 people from a Danish family collection comprising 138 Type I diabetic sib-pair families (289 affected and 121 unaffected offspring) and 103 Type I diabetic parent-offspring multiplex families (103 affected and 112 unaffected offspring) were typed for the three most frequent polymorphisms with high heterozygosity indices and for a FAS microsatellite. Haplotypes were established and data analysed using the extended transmission disequilibrium test, ETDT.¶Conclusion/interpretation. We found no overall evidence for linkage of the FAS polymorphisms to Type I diabetes. We conclude that it is unlikely that the Fas gene does contribute to genetic susceptibility for Type I diabetes. [Diabetologia (2000) 43: 800-808] |
---|---|
ISSN: | 0012-186X 1432-0428 |
DOI: | 10.1007/s001250051378 |