Loading…
Central limit theorems with a rate of convergence for time-dependent intermittent maps
We study dynamical systems arising as time-dependent compositions of Pomeau-Manneville-type intermittent maps. We establish central limit theorems for appropriately scaled and centered Birkhoff-like partial sums, with estimates on the rate of convergence. For maps chosen from a certain parameter ran...
Saved in:
Published in: | arXiv.org 2020-01 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study dynamical systems arising as time-dependent compositions of Pomeau-Manneville-type intermittent maps. We establish central limit theorems for appropriately scaled and centered Birkhoff-like partial sums, with estimates on the rate of convergence. For maps chosen from a certain parameter range, but without additional assumptions on how the maps vary with time, we obtain a self-normalized CLT provided that the variances of the partial sums grow sufficiently fast. When the maps are chosen randomly according to a shift-invariant probability measure, we identify conditions under which the quenched CLT holds, assuming fiberwise centering. Finally, we show a multivariate CLT for intermittent quasistatic systems. Our approach is based on Stein's method of normal approximation. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1811.11170 |