Loading…
Regularity theory for fully nonlinear integro-differential equations
We consider nonlinear integro‐differential equations like the ones that arise from stochastic control problems with purely jump Lévy processes. We obtain a nonlocal version of the ABP estimate, Harnack inequality, and interior C1, α regularity for general fully nonlinear integro‐differential equatio...
Saved in:
Published in: | Communications on pure and applied mathematics 2009-05, Vol.62 (5), p.597-638 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider nonlinear integro‐differential equations like the ones that arise from stochastic control problems with purely jump Lévy processes. We obtain a nonlocal version of the ABP estimate, Harnack inequality, and interior C1, α regularity for general fully nonlinear integro‐differential equations. Our estimates remain uniform as the degree of the equation approaches 2, so they can be seen as a natural extension of the regularity theory for elliptic partial differential equations. © 2008 Wiley Periodicals, Inc. |
---|---|
ISSN: | 0010-3640 1097-0312 |
DOI: | 10.1002/cpa.20274 |