Loading…

EXPERIMENTAL INVESTIGATION OF A REFRIGERANT AS A COOLANT OF A POWER PLANT CONDENSER

Steam power plants are the largest industrial users for water. New restrictions for using water in cooling systems have led to a search for alternative cooling methods. This paper presents an experimental study of using a vapor compression refrigeration system (VCRS) for cooling a steam power plant...

Full description

Saved in:
Bibliographic Details
Published in:International journal of air-conditioning and refrigeration 2014, 22(4), , pp.1-13
Main Authors: YOUSEF, KHALED, BOLIN, CHRISTOPHER, ENGEDA, ABRAHAM, HEGAZY, AHMED
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Steam power plants are the largest industrial users for water. New restrictions for using water in cooling systems have led to a search for alternative cooling methods. This paper presents an experimental study of using a vapor compression refrigeration system (VCRS) for cooling a steam power plant condenser. The refrigeration system uses commercially available and environmental friendly R-410A to cool an intermediate chilled water loop which is used as a coolant for the steam condenser. Working under lower condenser pressure with higher coolant flow rates reduces the power required for the refrigeration system and rises the coefficient of performance (COP) and condensation rate. Based on the present experimental data an adjustment to a known empirical correlation for the Nusselt number in a shell and tube steam condenser is presented. The results show that decreasing the inlet coolant temperature increases condensation rate, heat rejection, COP, overall heat transfer coefficient, and R-410A to condensate mass flow ratio. Moreover, the increase in the rate of condensation and COP is most pronounced at lower steam condenser operating pressure and higher water coolant mass flow rate. The results reveal that using a VCRS is capable of providing a steam condenser with a more constant and lower coolant temperature than traditional wet and dry cooling technologies.
ISSN:2010-1325
2010-1333
DOI:10.1142/S2010132514500242