Loading…
Effects of minocycline and rapamycin in gamma-irradiated human embryonic stem cells-derived cerebral organoids
Radiation induces DNA and protein damage and free radical formation, effectively establishing cellular senescence in a variety of models. We demonstrate the effects of two known pleiotropic drugs following gamma radiation damage in neurosphere/cerebral organoid system based on human embryonic stem c...
Saved in:
Published in: | Molecular biology reports 2019-02, Vol.46 (1), p.1343-1348 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Radiation induces DNA and protein damage and free radical formation, effectively establishing cellular senescence in a variety of models. We demonstrate the effects of two known pleiotropic drugs following gamma radiation damage in neurosphere/cerebral organoid system based on human embryonic stem cells. mTORC1 repression by rapamycin prior to irradiation, or metabolic activation by minocycline after irradiation, partially rescues neuroepithelium integrity, neurite-growing capacity, ventricle formation and extracellular acidification rate as an integral measure of metabolic output. Cerebral organoid model thus provides valid and robust readouts for radiation studies in a complex 3D setting. |
---|---|
ISSN: | 0301-4851 1573-4978 |
DOI: | 10.1007/s11033-018-4552-6 |