Loading…
Hyers‐Ulam‐Rassias stability of nonlinear integral equations through the Bielecki metric
We analyse different kinds of stabilities for classes of nonlinear integral equations of Fredholm and Volterra type. Sufficient conditions are obtained in order to guarantee Hyers‐Ulam‐Rassias, σ‐semi‐Hyers‐Ulam and Hyers‐Ulam stabilities for those integral equations. Finite and infinite intervals a...
Saved in:
Published in: | Mathematical methods in the applied sciences 2018-11, Vol.41 (17), p.7367-7383 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We analyse different kinds of stabilities for classes of nonlinear integral equations of Fredholm and Volterra type. Sufficient conditions are obtained in order to guarantee Hyers‐Ulam‐Rassias, σ‐semi‐Hyers‐Ulam and Hyers‐Ulam stabilities for those integral equations. Finite and infinite intervals are considered as integration domains. Those sufficient conditions are obtained based on the use of fixed point arguments within the framework of the Bielecki metric and its generalizations. The results are illustrated by concrete examples. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.4857 |