Loading…

Bimodal atomic force microscopy for the characterization of thiolated self-assembled monolayers

Surface coatings are becoming an integral part of materials. In recent years, molecular coatings have found larger acceptance and uses. Among them, self-assembled monolayers (SAMs) are attractive due to their inherent versatility, manufacturability, and scale up ease. Understanding their structure-p...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2018-12, Vol.1 (48), p.2327-2336
Main Authors: Athanasopoulou, Evangelia-Nefeli, Nianias, Nikolaos, Ong, Quy Khac, Stellacci, Francesco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Surface coatings are becoming an integral part of materials. In recent years, molecular coatings have found larger acceptance and uses. Among them, self-assembled monolayers (SAMs) are attractive due to their inherent versatility, manufacturability, and scale up ease. Understanding their structure-properties relationships in realistic conditions remains a major challenge. Here we present a methodology based on simultaneous topographical and nanomechanical characterization of SAMs using a commercially available setup for bimodal atomic force microscopy (AFM). It allows for accurate and quantitative measurement of surface elasticity, which is correlated to molecular ordering through topographical imaging. Our results indicate that effective surface elasticity ( E *) scales with monolayer formation-time and ligand-length, parameters known to affect ligand ordering. The method developed, is extended to provide localization of the chemical species present in thiolated binary SAMs. Within the systems tested phase separation down to ∼10 nm domains could be observed both in the topography and in the elasticity channel. In-depth analysis of self-assembled monolayers by bimodal atomic force microscopy.
ISSN:2040-3364
2040-3372
DOI:10.1039/c8nr07657j