Loading…

Exploiting Recurrent Neural Networks and Leap Motion Controller for the Recognition of Sign Language and Semaphoric Hand Gestures

Hand gesture recognition is still a topic of great interest for the computer vision community. In particular, sign language and semaphoric hand gestures are two foremost areas of interest due to their importance in human-human communication and human-computer interaction, respectively. Any hand gest...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on multimedia 2019-01, Vol.21 (1), p.234-245
Main Authors: Avola, Danilo, Bernardi, Marco, Cinque, Luigi, Foresti, Gian Luca, Massaroni, Cristiano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hand gesture recognition is still a topic of great interest for the computer vision community. In particular, sign language and semaphoric hand gestures are two foremost areas of interest due to their importance in human-human communication and human-computer interaction, respectively. Any hand gesture can be represented by sets of feature vectors that change over time. Recurrent neural networks (RNNs) are suited to analyze this type of set thanks to their ability to model the long-term contextual information of temporal sequences. In this paper, an RNN is trained by using as features the angles formed by the finger bones of the human hands. The selected features, acquired by a leap motion controller sensor, are chosen because the majority of human hand gestures produce joint movements that generate truly characteristic corners. The proposed method, including the effectiveness of the selected angles, was initially tested by creating a very challenging dataset composed by a large number of gestures defined by the American sign language. On the latter, an accuracy of over 96% was achieved. Afterwards, by using the Shape Retrieval Contest (SHREC) dataset, a wide collection of semaphoric hand gestures, the method was also proven to outperform in accuracy competing approaches of the current literature.
ISSN:1520-9210
1941-0077
DOI:10.1109/TMM.2018.2856094