Loading…

Adaptive finite‐time formation tracking control for multiple nonholonomic UAV system with uncertainties and quantized input

Summary An adaptive finite‐time formation tracking control approach is proposed for multiple unmanned aerial vehicle (UAV) system with quantized input signals in this paper. The UAVs are described by nonholonomic kinematic model and autopilot model with uncertainties. An enhanced hysteretic quantize...

Full description

Saved in:
Bibliographic Details
Published in:International journal of adaptive control and signal processing 2019-01, Vol.33 (1), p.114-129
Main Authors: Hu, Jinglin, Sun, Xiuxia, Liu, Shuguang, He, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary An adaptive finite‐time formation tracking control approach is proposed for multiple unmanned aerial vehicle (UAV) system with quantized input signals in this paper. The UAVs are described by nonholonomic kinematic model and autopilot model with uncertainties. An enhanced hysteretic quantizer is introduced to avoid chattering, and some restrictions are released by using a new quantization decomposition method. Based on backstepping technique and finite‐time Lyapunov stability theory, the adaptive finite‐time controller is designed for the trajectory tracking of the multi‐UAV formation. The nonholonomic constraints are solved by a transverse function. A transformation is introduced to the control input signals to eliminate the quantization effect. Stability analysis proves that the tracking errors can converge to a small neighborhood of the origin within finite time and all the closed‐loop signals are semiglobally finite‐time bounded. The effectiveness of the proposed control approach is validated by simulation and experiment.
ISSN:0890-6327
1099-1115
DOI:10.1002/acs.2954