Loading…
Calogero–Moser Model and R-Matrix Identities
We discuss properties of R-matrix-valued Lax pairs for the elliptic Calogero-Moser model. In particular, we show that the family of Hamiltonians arising from this Lax representation contains only known Hamiltonians and no others. We review the relation of R-matrix-valued Lax pairs to Hitchin systems...
Saved in:
Published in: | Theoretical and mathematical physics 2018-12, Vol.197 (3), p.1755-1770 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We discuss properties of R-matrix-valued Lax pairs for the elliptic Calogero-Moser model. In particular, we show that the family of Hamiltonians arising from this Lax representation contains only known Hamiltonians and no others. We review the relation of R-matrix-valued Lax pairs to Hitchin systems on bundles with nontrivial characteristic classes over elliptic curves and also to quantum long-range spin chains. We prove a general higher-order identity for solutions of the associative Yang–Baxter equation. |
---|---|
ISSN: | 0040-5779 1573-9333 |
DOI: | 10.1134/S0040577918120061 |