Loading…
Calogero–Moser Model and R-Matrix Identities
We discuss properties of R-matrix-valued Lax pairs for the elliptic Calogero-Moser model. In particular, we show that the family of Hamiltonians arising from this Lax representation contains only known Hamiltonians and no others. We review the relation of R-matrix-valued Lax pairs to Hitchin systems...
Saved in:
Published in: | Theoretical and mathematical physics 2018-12, Vol.197 (3), p.1755-1770 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-aa02c7e632e52feb85a70d6b4f3e98c455d6b05970b0149d0f0575a3e005b0263 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-aa02c7e632e52feb85a70d6b4f3e98c455d6b05970b0149d0f0575a3e005b0263 |
container_end_page | 1770 |
container_issue | 3 |
container_start_page | 1755 |
container_title | Theoretical and mathematical physics |
container_volume | 197 |
creator | Zotov, A. V. |
description | We discuss properties of R-matrix-valued Lax pairs for the elliptic Calogero-Moser model. In particular, we show that the family of Hamiltonians arising from this Lax representation contains only known Hamiltonians and no others. We review the relation of R-matrix-valued Lax pairs to Hitchin systems on bundles with nontrivial characteristic classes over elliptic curves and also to quantum long-range spin chains. We prove a general higher-order identity for solutions of the associative Yang–Baxter equation. |
doi_str_mv | 10.1134/S0040577918120061 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2164631640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164631640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-aa02c7e632e52feb85a70d6b4f3e98c455d6b05970b0149d0f0575a3e005b0263</originalsourceid><addsrcrecordid>eNp1UM1Kw0AQXkTBWH0AbwHPqTP7l-QoQW2hRfDnHDbJRFJitu6moDffwTf0SdxQwYN4mWH4fmbmY-wcYY4o5OUDgASVpjlmyAE0HrAIVSqSXAhxyKIJTib8mJ14vwFAgAwjNi9Mb5_J2a-Pz7X15OK1baiPzdDE98najK57i5cNDWM3duRP2VFrek9nP33Gnm6uH4tFsrq7XRZXq6QWWo6JMcDrlLTgpHhLVaZMCo2uZCsoz2qpVBhA5SlUgDJvoA23KyMIQFXAtZixi73v1tnXHfmx3NidG8LKkqOWWoQCgYV7Vu2s947acuu6F-PeS4RyiqX8E0vQ8L3GB-4QPv91_l_0Dc3fYis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164631640</pqid></control><display><type>article</type><title>Calogero–Moser Model and R-Matrix Identities</title><source>Springer Nature</source><creator>Zotov, A. V.</creator><creatorcontrib>Zotov, A. V.</creatorcontrib><description>We discuss properties of R-matrix-valued Lax pairs for the elliptic Calogero-Moser model. In particular, we show that the family of Hamiltonians arising from this Lax representation contains only known Hamiltonians and no others. We review the relation of R-matrix-valued Lax pairs to Hitchin systems on bundles with nontrivial characteristic classes over elliptic curves and also to quantum long-range spin chains. We prove a general higher-order identity for solutions of the associative Yang–Baxter equation.</description><identifier>ISSN: 0040-5779</identifier><identifier>EISSN: 1573-9333</identifier><identifier>DOI: 10.1134/S0040577918120061</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Applications of Mathematics ; Elliptic functions ; Hamiltonian functions ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Theoretical and mathematical physics, 2018-12, Vol.197 (3), p.1755-1770</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-aa02c7e632e52feb85a70d6b4f3e98c455d6b05970b0149d0f0575a3e005b0263</citedby><cites>FETCH-LOGICAL-c364t-aa02c7e632e52feb85a70d6b4f3e98c455d6b05970b0149d0f0575a3e005b0263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zotov, A. V.</creatorcontrib><title>Calogero–Moser Model and R-Matrix Identities</title><title>Theoretical and mathematical physics</title><addtitle>Theor Math Phys</addtitle><description>We discuss properties of R-matrix-valued Lax pairs for the elliptic Calogero-Moser model. In particular, we show that the family of Hamiltonians arising from this Lax representation contains only known Hamiltonians and no others. We review the relation of R-matrix-valued Lax pairs to Hitchin systems on bundles with nontrivial characteristic classes over elliptic curves and also to quantum long-range spin chains. We prove a general higher-order identity for solutions of the associative Yang–Baxter equation.</description><subject>Applications of Mathematics</subject><subject>Elliptic functions</subject><subject>Hamiltonian functions</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0040-5779</issn><issn>1573-9333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UM1Kw0AQXkTBWH0AbwHPqTP7l-QoQW2hRfDnHDbJRFJitu6moDffwTf0SdxQwYN4mWH4fmbmY-wcYY4o5OUDgASVpjlmyAE0HrAIVSqSXAhxyKIJTib8mJ14vwFAgAwjNi9Mb5_J2a-Pz7X15OK1baiPzdDE98najK57i5cNDWM3duRP2VFrek9nP33Gnm6uH4tFsrq7XRZXq6QWWo6JMcDrlLTgpHhLVaZMCo2uZCsoz2qpVBhA5SlUgDJvoA23KyMIQFXAtZixi73v1tnXHfmx3NidG8LKkqOWWoQCgYV7Vu2s947acuu6F-PeS4RyiqX8E0vQ8L3GB-4QPv91_l_0Dc3fYis</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Zotov, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>Calogero–Moser Model and R-Matrix Identities</title><author>Zotov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-aa02c7e632e52feb85a70d6b4f3e98c455d6b05970b0149d0f0575a3e005b0263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Elliptic functions</topic><topic>Hamiltonian functions</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zotov, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zotov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calogero–Moser Model and R-Matrix Identities</atitle><jtitle>Theoretical and mathematical physics</jtitle><stitle>Theor Math Phys</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>197</volume><issue>3</issue><spage>1755</spage><epage>1770</epage><pages>1755-1770</pages><issn>0040-5779</issn><eissn>1573-9333</eissn><abstract>We discuss properties of R-matrix-valued Lax pairs for the elliptic Calogero-Moser model. In particular, we show that the family of Hamiltonians arising from this Lax representation contains only known Hamiltonians and no others. We review the relation of R-matrix-valued Lax pairs to Hitchin systems on bundles with nontrivial characteristic classes over elliptic curves and also to quantum long-range spin chains. We prove a general higher-order identity for solutions of the associative Yang–Baxter equation.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0040577918120061</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5779 |
ispartof | Theoretical and mathematical physics, 2018-12, Vol.197 (3), p.1755-1770 |
issn | 0040-5779 1573-9333 |
language | eng |
recordid | cdi_proquest_journals_2164631640 |
source | Springer Nature |
subjects | Applications of Mathematics Elliptic functions Hamiltonian functions Mathematical and Computational Physics Physics Physics and Astronomy Theoretical |
title | Calogero–Moser Model and R-Matrix Identities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calogero%E2%80%93Moser%20Model%20and%20R-Matrix%20Identities&rft.jtitle=Theoretical%20and%20mathematical%20physics&rft.au=Zotov,%20A.%20V.&rft.date=2018-12-01&rft.volume=197&rft.issue=3&rft.spage=1755&rft.epage=1770&rft.pages=1755-1770&rft.issn=0040-5779&rft.eissn=1573-9333&rft_id=info:doi/10.1134/S0040577918120061&rft_dat=%3Cproquest_cross%3E2164631640%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-aa02c7e632e52feb85a70d6b4f3e98c455d6b05970b0149d0f0575a3e005b0263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2164631640&rft_id=info:pmid/&rfr_iscdi=true |