Loading…
Large scale distributed spatio-temporal reasoning using real-world knowledge graphs
Most of the existing work in the field of Qualitative Spatial Temporal Reasoning (QSTR) has focussed on comparatively small constraint networks that consist of hundreds or at most thousands of relations. Recently we have seen the emergence of much larger qualitative spatial knowledge graphs that fea...
Saved in:
Published in: | Knowledge-based systems 2019-01, Vol.163, p.214-226 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Most of the existing work in the field of Qualitative Spatial Temporal Reasoning (QSTR) has focussed on comparatively small constraint networks that consist of hundreds or at most thousands of relations. Recently we have seen the emergence of much larger qualitative spatial knowledge graphs that feature hundreds of thousands and millions of relations. Traditional approaches to QSTR are unable to reason over networks of such size.
In this article we describe ParQR, a parallel, distributed implementation of QSTR techniques that addresses the challenge of reasoning over large-scale qualitative spatial and temporal datasets. We have implemented ParQR using the Apache Spark framework, and evaluated our approach using both large scale synthetic datasets and real-world knowledge graphs. We show that our approach scales effectively, is able to handle constraint networks consisting of millions of relations, and outperforms current distributed implementations of QSTR. |
---|---|
ISSN: | 0950-7051 1872-7409 |
DOI: | 10.1016/j.knosys.2018.08.035 |