Loading…

Large scale distributed spatio-temporal reasoning using real-world knowledge graphs

Most of the existing work in the field of Qualitative Spatial Temporal Reasoning (QSTR) has focussed on comparatively small constraint networks that consist of hundreds or at most thousands of relations. Recently we have seen the emergence of much larger qualitative spatial knowledge graphs that fea...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems 2019-01, Vol.163, p.214-226
Main Authors: Mantle, Matthew, Batsakis, Sotirios, Antoniou, Grigoris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-ab610dbd0757e1d36ea42f98608d9638590506d32e0027d73edce5593fb0e763
cites cdi_FETCH-LOGICAL-c380t-ab610dbd0757e1d36ea42f98608d9638590506d32e0027d73edce5593fb0e763
container_end_page 226
container_issue
container_start_page 214
container_title Knowledge-based systems
container_volume 163
creator Mantle, Matthew
Batsakis, Sotirios
Antoniou, Grigoris
description Most of the existing work in the field of Qualitative Spatial Temporal Reasoning (QSTR) has focussed on comparatively small constraint networks that consist of hundreds or at most thousands of relations. Recently we have seen the emergence of much larger qualitative spatial knowledge graphs that feature hundreds of thousands and millions of relations. Traditional approaches to QSTR are unable to reason over networks of such size. In this article we describe ParQR, a parallel, distributed implementation of QSTR techniques that addresses the challenge of reasoning over large-scale qualitative spatial and temporal datasets. We have implemented ParQR using the Apache Spark framework, and evaluated our approach using both large scale synthetic datasets and real-world knowledge graphs. We show that our approach scales effectively, is able to handle constraint networks consisting of millions of relations, and outperforms current distributed implementations of QSTR.
doi_str_mv 10.1016/j.knosys.2018.08.035
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2165083295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705118304313</els_id><sourcerecordid>2165083295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-ab610dbd0757e1d36ea42f98608d9638590506d32e0027d73edce5593fb0e763</originalsourceid><addsrcrecordid>eNp9UEtLxDAQDqLguvoPPBQ8d50km7S9CLL4ggUP7j2kzXRN7TY1aV3235tSz8Iww8D3mPkIuaWwokDlfbP66lw4hRUDmq8gFhdnZEHzjKXZGopzsoBCQJqBoJfkKoQGABij-YJ8bLXfYxIq3WJibBi8LccBTRJ6PViXDnjonddt4lEH19lun4xh6nFv06PzrUmi-bFFE2X2Xvef4Zpc1LoNePM3l2T3_LTbvKbb95e3zeM2rXgOQ6pLScGUBjKRITVcol6zusgl5KaQPBcFCJCGM4zHZibjaCoUouB1CZhJviR3s2zv3feIYVCNG30XHRWjUkDOWSEiaj2jKu9C8Fir3tuD9idFQU3pqUbN6akpPQWx-ER7mGkYH_ix6FWoLHYVGuuxGpRx9n-BXzSce1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165083295</pqid></control><display><type>article</type><title>Large scale distributed spatio-temporal reasoning using real-world knowledge graphs</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>ScienceDirect Freedom Collection</source><creator>Mantle, Matthew ; Batsakis, Sotirios ; Antoniou, Grigoris</creator><creatorcontrib>Mantle, Matthew ; Batsakis, Sotirios ; Antoniou, Grigoris</creatorcontrib><description>Most of the existing work in the field of Qualitative Spatial Temporal Reasoning (QSTR) has focussed on comparatively small constraint networks that consist of hundreds or at most thousands of relations. Recently we have seen the emergence of much larger qualitative spatial knowledge graphs that feature hundreds of thousands and millions of relations. Traditional approaches to QSTR are unable to reason over networks of such size. In this article we describe ParQR, a parallel, distributed implementation of QSTR techniques that addresses the challenge of reasoning over large-scale qualitative spatial and temporal datasets. We have implemented ParQR using the Apache Spark framework, and evaluated our approach using both large scale synthetic datasets and real-world knowledge graphs. We show that our approach scales effectively, is able to handle constraint networks consisting of millions of relations, and outperforms current distributed implementations of QSTR.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2018.08.035</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Calculus ; Current distribution ; Datasets ; Distributed computing ; Expert systems ; Graphs ; Knowledge graphs ; Networks ; Parallel computing ; Qualitative reasoning ; Reasoning ; Temporal logic</subject><ispartof>Knowledge-based systems, 2019-01, Vol.163, p.214-226</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-ab610dbd0757e1d36ea42f98608d9638590506d32e0027d73edce5593fb0e763</citedby><cites>FETCH-LOGICAL-c380t-ab610dbd0757e1d36ea42f98608d9638590506d32e0027d73edce5593fb0e763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906,34116</link.rule.ids></links><search><creatorcontrib>Mantle, Matthew</creatorcontrib><creatorcontrib>Batsakis, Sotirios</creatorcontrib><creatorcontrib>Antoniou, Grigoris</creatorcontrib><title>Large scale distributed spatio-temporal reasoning using real-world knowledge graphs</title><title>Knowledge-based systems</title><description>Most of the existing work in the field of Qualitative Spatial Temporal Reasoning (QSTR) has focussed on comparatively small constraint networks that consist of hundreds or at most thousands of relations. Recently we have seen the emergence of much larger qualitative spatial knowledge graphs that feature hundreds of thousands and millions of relations. Traditional approaches to QSTR are unable to reason over networks of such size. In this article we describe ParQR, a parallel, distributed implementation of QSTR techniques that addresses the challenge of reasoning over large-scale qualitative spatial and temporal datasets. We have implemented ParQR using the Apache Spark framework, and evaluated our approach using both large scale synthetic datasets and real-world knowledge graphs. We show that our approach scales effectively, is able to handle constraint networks consisting of millions of relations, and outperforms current distributed implementations of QSTR.</description><subject>Calculus</subject><subject>Current distribution</subject><subject>Datasets</subject><subject>Distributed computing</subject><subject>Expert systems</subject><subject>Graphs</subject><subject>Knowledge graphs</subject><subject>Networks</subject><subject>Parallel computing</subject><subject>Qualitative reasoning</subject><subject>Reasoning</subject><subject>Temporal logic</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9UEtLxDAQDqLguvoPPBQ8d50km7S9CLL4ggUP7j2kzXRN7TY1aV3235tSz8Iww8D3mPkIuaWwokDlfbP66lw4hRUDmq8gFhdnZEHzjKXZGopzsoBCQJqBoJfkKoQGABij-YJ8bLXfYxIq3WJibBi8LccBTRJ6PViXDnjonddt4lEH19lun4xh6nFv06PzrUmi-bFFE2X2Xvef4Zpc1LoNePM3l2T3_LTbvKbb95e3zeM2rXgOQ6pLScGUBjKRITVcol6zusgl5KaQPBcFCJCGM4zHZibjaCoUouB1CZhJviR3s2zv3feIYVCNG30XHRWjUkDOWSEiaj2jKu9C8Fir3tuD9idFQU3pqUbN6akpPQWx-ER7mGkYH_ix6FWoLHYVGuuxGpRx9n-BXzSce1c</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Mantle, Matthew</creator><creator>Batsakis, Sotirios</creator><creator>Antoniou, Grigoris</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190101</creationdate><title>Large scale distributed spatio-temporal reasoning using real-world knowledge graphs</title><author>Mantle, Matthew ; Batsakis, Sotirios ; Antoniou, Grigoris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-ab610dbd0757e1d36ea42f98608d9638590506d32e0027d73edce5593fb0e763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Calculus</topic><topic>Current distribution</topic><topic>Datasets</topic><topic>Distributed computing</topic><topic>Expert systems</topic><topic>Graphs</topic><topic>Knowledge graphs</topic><topic>Networks</topic><topic>Parallel computing</topic><topic>Qualitative reasoning</topic><topic>Reasoning</topic><topic>Temporal logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mantle, Matthew</creatorcontrib><creatorcontrib>Batsakis, Sotirios</creatorcontrib><creatorcontrib>Antoniou, Grigoris</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mantle, Matthew</au><au>Batsakis, Sotirios</au><au>Antoniou, Grigoris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large scale distributed spatio-temporal reasoning using real-world knowledge graphs</atitle><jtitle>Knowledge-based systems</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>163</volume><spage>214</spage><epage>226</epage><pages>214-226</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Most of the existing work in the field of Qualitative Spatial Temporal Reasoning (QSTR) has focussed on comparatively small constraint networks that consist of hundreds or at most thousands of relations. Recently we have seen the emergence of much larger qualitative spatial knowledge graphs that feature hundreds of thousands and millions of relations. Traditional approaches to QSTR are unable to reason over networks of such size. In this article we describe ParQR, a parallel, distributed implementation of QSTR techniques that addresses the challenge of reasoning over large-scale qualitative spatial and temporal datasets. We have implemented ParQR using the Apache Spark framework, and evaluated our approach using both large scale synthetic datasets and real-world knowledge graphs. We show that our approach scales effectively, is able to handle constraint networks consisting of millions of relations, and outperforms current distributed implementations of QSTR.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2018.08.035</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2019-01, Vol.163, p.214-226
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2165083295
source Library & Information Science Abstracts (LISA); ScienceDirect Freedom Collection
subjects Calculus
Current distribution
Datasets
Distributed computing
Expert systems
Graphs
Knowledge graphs
Networks
Parallel computing
Qualitative reasoning
Reasoning
Temporal logic
title Large scale distributed spatio-temporal reasoning using real-world knowledge graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20scale%20distributed%20spatio-temporal%20reasoning%20using%20real-world%20knowledge%20graphs&rft.jtitle=Knowledge-based%20systems&rft.au=Mantle,%20Matthew&rft.date=2019-01-01&rft.volume=163&rft.spage=214&rft.epage=226&rft.pages=214-226&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2018.08.035&rft_dat=%3Cproquest_cross%3E2165083295%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-ab610dbd0757e1d36ea42f98608d9638590506d32e0027d73edce5593fb0e763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2165083295&rft_id=info:pmid/&rfr_iscdi=true