Loading…

Synthesis, Characterization, and Molecular Docking Study of Some Novel Imidazole Derivatives as Potential Antifungal Agents

The azole pharmacophore is still regarded as a viable lead structure for the synthesis of more effective antifungal agents. In this study, two novel series of imidazole derivatives containing dithiocarbamate (5a–5g) and (benz)azolethiol (6a–6n) side chains that are structurally related to the famous...

Full description

Saved in:
Bibliographic Details
Published in:Journal of heterocyclic chemistry 2019-01, Vol.56 (1), p.142-152
Main Authors: Işık, Ayşen, Acar Çevik, Ulviye, Sağlık, Begüm Nurpelin, Özkay, Yusuf
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The azole pharmacophore is still regarded as a viable lead structure for the synthesis of more effective antifungal agents. In this study, two novel series of imidazole derivatives containing dithiocarbamate (5a–5g) and (benz)azolethiol (6a–6n) side chains that are structurally related to the famous antifungal azole pharmacophore were synthesized, and the structures of them were characterized by spectral (IR, 1H NMR, 13C NMR, and MS spectra) analyses. The synthesized compounds were screened in vitro antifungal activity against pathogenic strains fungi. Theoretical ADME (absorption, distribution, metabolism, and excretion) predictions were calculated for final compounds. A molecular docking study of the most active compound with target “lanosterol 14α‐demethylase” (CYP51) was performed to unravel the mode of antifungal action. Compound 5e, which features imidazole and 4‐methoxybenzyl piperazine scaffolds, showed the most promising antifungal activity with an MIC50 value of 0.78 μg/mL against C. krusei. Effect of the compound 5e against ergosterol biosynthesis was observed by LC–MS–MS method, which is based on quantification of ergosterol level in C. krusei.
ISSN:0022-152X
1943-5193
DOI:10.1002/jhet.3388