Loading…
Ramsey number of K3 versus F3,n
In this note, we prove that the Ramsey number r(K3,K1+nK3)=6n+1 for all n≥3. Moreover, we show that the star-critical Ramsey number r∗(K3,K1+nK3)=3n+3 holds for all n≥4.
Saved in:
Published in: | Discrete Applied Mathematics 2018-12, Vol.251, p.345-348 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this note, we prove that the Ramsey number r(K3,K1+nK3)=6n+1 for all n≥3. Moreover, we show that the star-critical Ramsey number r∗(K3,K1+nK3)=3n+3 holds for all n≥4. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2018.05.056 |