Loading…
Stochastic Volatility: Option Pricing using a Multinomial Recombining Tree
The problem of option pricing is treated using the Stochastic Volatility (SV) model: the volatility of the underlying asset is a function of an exogenous stochastic process, typically assumed to be mean-reverting. Assuming that only discrete past stock information is available, an interacting partic...
Saved in:
Published in: | Applied mathematical finance. 2008-04, Vol.15 (2), p.151-181 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The problem of option pricing is treated using the Stochastic Volatility (SV) model: the volatility of the underlying asset is a function of an exogenous stochastic process, typically assumed to be mean-reverting. Assuming that only discrete past stock information is available, an interacting particle stochastic filtering algorithm due to Del Moral et al. (Del Moral et al.,
2001
) is adapted to estimate the SV, and a quadrinomial tree is constructed which samples volatilities from the SV filter's empirical measure approximation at time 0. Proofs of convergence of the tree to continuous-time SV models are provided. Classical arbitrage-free option pricing is performed on the tree, and provides answers that are close to market prices of options on the SP500 or on blue-chip stocks. Results obtained here are compared with those from non-random volatility models, and from models which continue to estimate volatility after time 0. It is shown precisely how to calibrate the incomplete market, choosing a specific martingale measure, by using a benchmark option. |
---|---|
ISSN: | 1350-486X 1466-4313 |
DOI: | 10.1080/13504860701596745 |