Loading…

Deep Residual Network for Steganalysis of Digital Images

Steganography detectors built as deep convolutional neural networks have firmly established themselves as superior to the previous detection paradigm - classifiers based on rich media models. Existing network architectures, however, still contain elements designed by hand, such as fixed or constrain...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information forensics and security 2019-05, Vol.14 (5), p.1181-1193
Main Authors: Boroumand, Mehdi, Mo Chen, Fridrich, Jessica
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Steganography detectors built as deep convolutional neural networks have firmly established themselves as superior to the previous detection paradigm - classifiers based on rich media models. Existing network architectures, however, still contain elements designed by hand, such as fixed or constrained convolutional kernels, heuristic initialization of kernels, the thresholded linear unit that mimics truncation in rich models, quantization of feature maps, and awareness of JPEG phase. In this work, we describe a deep residual architecture designed to minimize the use of heuristics and externally enforced elements that is universal in the sense that it provides state-of-the-art detection accuracy for both spatial-domain and JPEG steganography. The key part of the proposed architecture is a significantly expanded front part of the detector that "computes noise residuals" in which pooling has been disabled to prevent suppression of the stego signal. Extensive experiments show the superior performance of this network with a significant improvement, especially in the JPEG domain. Further performance boost is observed by supplying the selection channel as a second channel.
ISSN:1556-6013
1556-6021
DOI:10.1109/TIFS.2018.2871749