Loading…

Multivariate Cryptography Based on Clipped Hopfield Neural Network

Designing secure and efficient multivariate public key cryptosystems [multivariate cryptography (MVC)] to strengthen the security of RSA and ECC in conventional and quantum computational environment continues to be a challenging research in recent years. In this paper, we will describe multivariate...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2018-02, Vol.29 (2), p.353-363
Main Authors: Wang, Jia, Cheng, Lee-Ming, Su, Tong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Designing secure and efficient multivariate public key cryptosystems [multivariate cryptography (MVC)] to strengthen the security of RSA and ECC in conventional and quantum computational environment continues to be a challenging research in recent years. In this paper, we will describe multivariate public key cryptosystems based on extended Clipped Hopfield Neural Network (CHNN) and implement it using the MVC (CHNN-MVC) framework operated in \text {GF}(p) space. The Diffie-Hellman key exchange algorithm is extended into the matrix field, which illustrates the feasibility of its new applications in both classic and postquantum cryptography. The efficiency and security of our proposed new public key cryptosystem CHNN-MVC are simulated and found to be NP-hard. The proposed algorithm will strengthen multivariate public key cryptosystems and allows hardware realization practicality.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2016.2626466