Loading…
Wavelet‐based estimators for mixture regression
We consider a process that is observed as a mixture of two random distributions, where the mixing probability is an unknown function of time. The setup is built upon a wavelet‐based mixture regression. Two linear wavelet estimators are proposed. Furthermore, we consider three regularizing procedures...
Saved in:
Published in: | Scandinavian journal of statistics 2019-03, Vol.46 (1), p.215-234 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a process that is observed as a mixture of two random distributions, where the mixing probability is an unknown function of time. The setup is built upon a wavelet‐based mixture regression. Two linear wavelet estimators are proposed. Furthermore, we consider three regularizing procedures for each of the two wavelet methods. We also discuss regularity conditions under which the consistency of the wavelet methods is attained and derive rates of convergence for the proposed estimators. A Monte Carlo simulation study is conducted to illustrate the performance of the estimators. Various scenarios for the mixing probability function are used in the simulations, in addition to a range of sample sizes and resolution levels. We apply the proposed methods to a data set consisting of array Comparative Genomic Hybridization from glioblastoma cancer studies. |
---|---|
ISSN: | 0303-6898 1467-9469 |
DOI: | 10.1111/sjos.12344 |