Loading…

Anisotropic Mechanical Behavior of Additive Manufactured AISI 316L Steel

We investigated the relationship between the microstructure and mechanical properties of additive manufactured AISI 316L steel regarding the grain aspect ratio and orientation. For this purpose, two types of specimen (vertically and horizontally built) were prepared by a selective laser melting proc...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2019-04, Vol.50 (4), p.2014-2021
Main Authors: Im, Yong-Deok, Kim, Kyung-Hoon, Jung, Kyung-Hwan, Lee, Young-Kook, Song, Kuk-Hyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigated the relationship between the microstructure and mechanical properties of additive manufactured AISI 316L steel regarding the grain aspect ratio and orientation. For this purpose, two types of specimen (vertically and horizontally built) were prepared by a selective laser melting process, and the mechanical behavior was evaluated in different tensile directions. After this, to observe the characteristic grain boundary distributions such as grain size, shape, orientation, and intergranular misorientation, electron backscattering diffraction analysis was conducted on the initial and tensile-strained specimens. The specimen with a lower grain aspect ratio showed enhanced yield and tensile strengths arising from the higher strain hardening rate relative to the specimen with higher grain aspect ratio. In addition, the material composed of grains with a higher Taylor factor showed more accumulated dislocation density during tensile deformation when compared to the material composed of grains with a lower Taylor factor, which also contributed to the increase in tensile strengths because of the enhanced strain hardening rate.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-019-05139-7