Loading…

Element-Specific Detection in Capillary Electrophoresis Using X-ray Fluorescence Spectroscopy

X-ray fluorescence spectroscopy is demonstrated here as a novel, element-specific detector for capillary electrophoresis. Monochromatic 10 keV X-rays from a synchrotron light source are used to excite core electrons, causing emission of characteristic Kα X-ray fluorescence (XRF) lines. Using this te...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2000-04, Vol.72 (8), p.1754-1758
Main Authors: Mann, Stephanie E, Ringo, Moira C, Shea-McCarthy, Grace, Penner-Hahn, James, Evans, Christine E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:X-ray fluorescence spectroscopy is demonstrated here as a novel, element-specific detector for capillary electrophoresis. Monochromatic 10 keV X-rays from a synchrotron light source are used to excite core electrons, causing emission of characteristic Kα X-ray fluorescence (XRF) lines. Using this technique, XRF energies provide elemental identification, while XRF intensities can be used to quantitate the metal composition of each eluent. An X-ray transparent polymer coupling is used to create a window for the on-line, X-ray detection. This coupling contributes no measurable extra-column variance, and electrophoretic mobilities for the metal complexes used as model solutes are highly reproducible. The combination of XRF detection with capillary electrophoresis (CE-XRF) creates the first on-line detection system that is element-specific, nondestructive, and directly applicable to a broad range of applications including nonelectroactive species. CE-XRF is successfully demonstrated here for high binding-constant complexes of Fe(III), Co(II), Cu(II), and Zn(II). Within a single injection, electropherograms are obtained for each element of interest, with the element identity obtained directly from the emission energy. In contrast with ICPMS, this detection technique is directly on-line and does not require volatilization of the eluent. As a result, element-specific detection is not limited by the sample or the buffer volatility or atomization efficiency. Simultaneous XRF and UV absorbance detection can be used to provide an on-line determination of metal/chelate ratios. Although XRF detection limits are presently only in the 0.1 mM (0.5 ng) range, both collection geometry and incident intensity have yet to be optimized. Further optimization is expected to enhance this detection limit by another 2−3 orders of magnitude. As a result, the advent of XRF detection combined with the separating power of CE presents new possibilities for on-line, element-specific analysis.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac9909608