Loading…

Nucleation and Crystal Formation in Lithium Disilicate‐Apatite Glass‐Ceramic from a Combined Use of X‐Ray Diffraction, Solid‐State NMR, and Microscopy

Glass‐ceramics are multi‐phase materials that are comprised of one amorphous phase and at least one crystalline phase. Their versatile performance and properties can be engineered by alterations of the three fundamental steps – formulation and production of the amorphous base glass, nucleation, and...

Full description

Saved in:
Bibliographic Details
Published in:Helvetica chimica acta 2019-02, Vol.102 (2), p.n/a
Main Authors: Liao, Wei‐Chih, Rampf, Markus, Dittmer, Marc, Copéret, Christophe, Höland, Wolfram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3170-35a4e24979ac92859722f24cebee0f95f58573e3de8c7165c9bc6253d4f336573
cites cdi_FETCH-LOGICAL-c3170-35a4e24979ac92859722f24cebee0f95f58573e3de8c7165c9bc6253d4f336573
container_end_page n/a
container_issue 2
container_start_page
container_title Helvetica chimica acta
container_volume 102
creator Liao, Wei‐Chih
Rampf, Markus
Dittmer, Marc
Copéret, Christophe
Höland, Wolfram
description Glass‐ceramics are multi‐phase materials that are comprised of one amorphous phase and at least one crystalline phase. Their versatile performance and properties can be engineered by alterations of the three fundamental steps – formulation and production of the amorphous base glass, nucleation, and crystallization. Efforts have been made on syntheses of glass‐ceramics with different components, yet little is known about the details of nucleation and crystallization processes that are essential for tailoring glass‐ceramic properties. Herein, we investigate the nucleation and crystallization mechanisms of a multi‐component, that is SiO2‐Al2O3‐CaO‐Li2O‐K2O‐P2O5‐F, glass‐ceramic system by a combined use of powder X‐ray diffraction (pXRD), solid‐state nuclear magnetic resonance (NMR), and electron microscopic (EM) techniques. The role of P2O5 in the nucleation and crystallization processes is particularly studied. We show that the formation of lithium silicate crystals being independent of the P2O5‐associated crystals, and the separation of P2O5 phases into individual growth domains of lithium orthophosphate and fluorapatite. We also observe the non‐uniform distribution of fluorapatite particles that explains the opalescence effect of this glass‐ceramic.
doi_str_mv 10.1002/hlca.201800210
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2178922806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2178922806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-35a4e24979ac92859722f24cebee0f95f58573e3de8c7165c9bc6253d4f336573</originalsourceid><addsrcrecordid>eNqFUd1KwzAUDqLgnN56HfDWziRd2uZyVLcJ24TNwe5KliYso21m0iK98xF8Ah_OJzGzopdeHc75fs4HHwDXGA0wQuRuVwg-IAgnfsHoBPQwJSQgUUxPQQ_5e4Aw25yDC-f2CCHGUNwDH4tGFJLX2lSQVzlMbetqXsCxsWV31RWc6XqnmxLea6cLLXgtP9_eRweP1xJOCu6c31NpeakFVNaUkMPUlFtdyRyunYRGwY2nLHnrPZSyXBytb-HKFDr3wKr2nnAxX95-h5hrYY0T5tBegjPFCyevfmYfrMcPz-k0mD1NHtPRLBAhjlEQUj6UZMhixgUjCWUxIYoMhdxKiRSjiiY0DmWYy0TEOKKCbUVEaJgPVRhGHuqDm873YM1LI12d7U1jK_8yIzhOGCEJijxr0LGO8ZyVKjtYXXLbZhhlxw6yYwfZbwdewDrBqy5k-w87m87S0Z_2C7s1j1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178922806</pqid></control><display><type>article</type><title>Nucleation and Crystal Formation in Lithium Disilicate‐Apatite Glass‐Ceramic from a Combined Use of X‐Ray Diffraction, Solid‐State NMR, and Microscopy</title><source>Wiley</source><creator>Liao, Wei‐Chih ; Rampf, Markus ; Dittmer, Marc ; Copéret, Christophe ; Höland, Wolfram</creator><creatorcontrib>Liao, Wei‐Chih ; Rampf, Markus ; Dittmer, Marc ; Copéret, Christophe ; Höland, Wolfram</creatorcontrib><description>Glass‐ceramics are multi‐phase materials that are comprised of one amorphous phase and at least one crystalline phase. Their versatile performance and properties can be engineered by alterations of the three fundamental steps – formulation and production of the amorphous base glass, nucleation, and crystallization. Efforts have been made on syntheses of glass‐ceramics with different components, yet little is known about the details of nucleation and crystallization processes that are essential for tailoring glass‐ceramic properties. Herein, we investigate the nucleation and crystallization mechanisms of a multi‐component, that is SiO2‐Al2O3‐CaO‐Li2O‐K2O‐P2O5‐F, glass‐ceramic system by a combined use of powder X‐ray diffraction (pXRD), solid‐state nuclear magnetic resonance (NMR), and electron microscopic (EM) techniques. The role of P2O5 in the nucleation and crystallization processes is particularly studied. We show that the formation of lithium silicate crystals being independent of the P2O5‐associated crystals, and the separation of P2O5 phases into individual growth domains of lithium orthophosphate and fluorapatite. We also observe the non‐uniform distribution of fluorapatite particles that explains the opalescence effect of this glass‐ceramic.</description><identifier>ISSN: 0018-019X</identifier><identifier>EISSN: 1522-2675</identifier><identifier>DOI: 10.1002/hlca.201800210</identifier><language>eng</language><publisher>Zürich: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Amorphous materials ; Apatite ; Ceramic powders ; Ceramics ; Crystallization ; Crystals ; Domains ; Fluorapatite ; Glass ; glass-ceramics ; Lithium ; Lithium oxides ; lithium silicates ; Microscopy ; NMR ; Nuclear magnetic resonance ; Nucleation ; Opalescence ; Orthophosphate ; Phosphorus pentoxide ; Powder ; Silicon dioxide ; solid-state NMR ; X-ray diffraction</subject><ispartof>Helvetica chimica acta, 2019-02, Vol.102 (2), p.n/a</ispartof><rights>2019 Wiley‐VHCA AG, Zurich, Switzerland</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3170-35a4e24979ac92859722f24cebee0f95f58573e3de8c7165c9bc6253d4f336573</citedby><cites>FETCH-LOGICAL-c3170-35a4e24979ac92859722f24cebee0f95f58573e3de8c7165c9bc6253d4f336573</cites><orcidid>0000-0002-4656-6291 ; 0000-0001-6538-6344 ; 0000-0001-9660-3890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Liao, Wei‐Chih</creatorcontrib><creatorcontrib>Rampf, Markus</creatorcontrib><creatorcontrib>Dittmer, Marc</creatorcontrib><creatorcontrib>Copéret, Christophe</creatorcontrib><creatorcontrib>Höland, Wolfram</creatorcontrib><title>Nucleation and Crystal Formation in Lithium Disilicate‐Apatite Glass‐Ceramic from a Combined Use of X‐Ray Diffraction, Solid‐State NMR, and Microscopy</title><title>Helvetica chimica acta</title><description>Glass‐ceramics are multi‐phase materials that are comprised of one amorphous phase and at least one crystalline phase. Their versatile performance and properties can be engineered by alterations of the three fundamental steps – formulation and production of the amorphous base glass, nucleation, and crystallization. Efforts have been made on syntheses of glass‐ceramics with different components, yet little is known about the details of nucleation and crystallization processes that are essential for tailoring glass‐ceramic properties. Herein, we investigate the nucleation and crystallization mechanisms of a multi‐component, that is SiO2‐Al2O3‐CaO‐Li2O‐K2O‐P2O5‐F, glass‐ceramic system by a combined use of powder X‐ray diffraction (pXRD), solid‐state nuclear magnetic resonance (NMR), and electron microscopic (EM) techniques. The role of P2O5 in the nucleation and crystallization processes is particularly studied. We show that the formation of lithium silicate crystals being independent of the P2O5‐associated crystals, and the separation of P2O5 phases into individual growth domains of lithium orthophosphate and fluorapatite. We also observe the non‐uniform distribution of fluorapatite particles that explains the opalescence effect of this glass‐ceramic.</description><subject>Aluminum oxide</subject><subject>Amorphous materials</subject><subject>Apatite</subject><subject>Ceramic powders</subject><subject>Ceramics</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Domains</subject><subject>Fluorapatite</subject><subject>Glass</subject><subject>glass-ceramics</subject><subject>Lithium</subject><subject>Lithium oxides</subject><subject>lithium silicates</subject><subject>Microscopy</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nucleation</subject><subject>Opalescence</subject><subject>Orthophosphate</subject><subject>Phosphorus pentoxide</subject><subject>Powder</subject><subject>Silicon dioxide</subject><subject>solid-state NMR</subject><subject>X-ray diffraction</subject><issn>0018-019X</issn><issn>1522-2675</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUd1KwzAUDqLgnN56HfDWziRd2uZyVLcJ24TNwe5KliYso21m0iK98xF8Ah_OJzGzopdeHc75fs4HHwDXGA0wQuRuVwg-IAgnfsHoBPQwJSQgUUxPQQ_5e4Aw25yDC-f2CCHGUNwDH4tGFJLX2lSQVzlMbetqXsCxsWV31RWc6XqnmxLea6cLLXgtP9_eRweP1xJOCu6c31NpeakFVNaUkMPUlFtdyRyunYRGwY2nLHnrPZSyXBytb-HKFDr3wKr2nnAxX95-h5hrYY0T5tBegjPFCyevfmYfrMcPz-k0mD1NHtPRLBAhjlEQUj6UZMhixgUjCWUxIYoMhdxKiRSjiiY0DmWYy0TEOKKCbUVEaJgPVRhGHuqDm873YM1LI12d7U1jK_8yIzhOGCEJijxr0LGO8ZyVKjtYXXLbZhhlxw6yYwfZbwdewDrBqy5k-w87m87S0Z_2C7s1j1w</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Liao, Wei‐Chih</creator><creator>Rampf, Markus</creator><creator>Dittmer, Marc</creator><creator>Copéret, Christophe</creator><creator>Höland, Wolfram</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-4656-6291</orcidid><orcidid>https://orcid.org/0000-0001-6538-6344</orcidid><orcidid>https://orcid.org/0000-0001-9660-3890</orcidid></search><sort><creationdate>201902</creationdate><title>Nucleation and Crystal Formation in Lithium Disilicate‐Apatite Glass‐Ceramic from a Combined Use of X‐Ray Diffraction, Solid‐State NMR, and Microscopy</title><author>Liao, Wei‐Chih ; Rampf, Markus ; Dittmer, Marc ; Copéret, Christophe ; Höland, Wolfram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-35a4e24979ac92859722f24cebee0f95f58573e3de8c7165c9bc6253d4f336573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum oxide</topic><topic>Amorphous materials</topic><topic>Apatite</topic><topic>Ceramic powders</topic><topic>Ceramics</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Domains</topic><topic>Fluorapatite</topic><topic>Glass</topic><topic>glass-ceramics</topic><topic>Lithium</topic><topic>Lithium oxides</topic><topic>lithium silicates</topic><topic>Microscopy</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nucleation</topic><topic>Opalescence</topic><topic>Orthophosphate</topic><topic>Phosphorus pentoxide</topic><topic>Powder</topic><topic>Silicon dioxide</topic><topic>solid-state NMR</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Wei‐Chih</creatorcontrib><creatorcontrib>Rampf, Markus</creatorcontrib><creatorcontrib>Dittmer, Marc</creatorcontrib><creatorcontrib>Copéret, Christophe</creatorcontrib><creatorcontrib>Höland, Wolfram</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Helvetica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Wei‐Chih</au><au>Rampf, Markus</au><au>Dittmer, Marc</au><au>Copéret, Christophe</au><au>Höland, Wolfram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleation and Crystal Formation in Lithium Disilicate‐Apatite Glass‐Ceramic from a Combined Use of X‐Ray Diffraction, Solid‐State NMR, and Microscopy</atitle><jtitle>Helvetica chimica acta</jtitle><date>2019-02</date><risdate>2019</risdate><volume>102</volume><issue>2</issue><epage>n/a</epage><issn>0018-019X</issn><eissn>1522-2675</eissn><abstract>Glass‐ceramics are multi‐phase materials that are comprised of one amorphous phase and at least one crystalline phase. Their versatile performance and properties can be engineered by alterations of the three fundamental steps – formulation and production of the amorphous base glass, nucleation, and crystallization. Efforts have been made on syntheses of glass‐ceramics with different components, yet little is known about the details of nucleation and crystallization processes that are essential for tailoring glass‐ceramic properties. Herein, we investigate the nucleation and crystallization mechanisms of a multi‐component, that is SiO2‐Al2O3‐CaO‐Li2O‐K2O‐P2O5‐F, glass‐ceramic system by a combined use of powder X‐ray diffraction (pXRD), solid‐state nuclear magnetic resonance (NMR), and electron microscopic (EM) techniques. The role of P2O5 in the nucleation and crystallization processes is particularly studied. We show that the formation of lithium silicate crystals being independent of the P2O5‐associated crystals, and the separation of P2O5 phases into individual growth domains of lithium orthophosphate and fluorapatite. We also observe the non‐uniform distribution of fluorapatite particles that explains the opalescence effect of this glass‐ceramic.</abstract><cop>Zürich</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/hlca.201800210</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4656-6291</orcidid><orcidid>https://orcid.org/0000-0001-6538-6344</orcidid><orcidid>https://orcid.org/0000-0001-9660-3890</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-019X
ispartof Helvetica chimica acta, 2019-02, Vol.102 (2), p.n/a
issn 0018-019X
1522-2675
language eng
recordid cdi_proquest_journals_2178922806
source Wiley
subjects Aluminum oxide
Amorphous materials
Apatite
Ceramic powders
Ceramics
Crystallization
Crystals
Domains
Fluorapatite
Glass
glass-ceramics
Lithium
Lithium oxides
lithium silicates
Microscopy
NMR
Nuclear magnetic resonance
Nucleation
Opalescence
Orthophosphate
Phosphorus pentoxide
Powder
Silicon dioxide
solid-state NMR
X-ray diffraction
title Nucleation and Crystal Formation in Lithium Disilicate‐Apatite Glass‐Ceramic from a Combined Use of X‐Ray Diffraction, Solid‐State NMR, and Microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleation%20and%20Crystal%20Formation%20in%20Lithium%20Disilicate%E2%80%90Apatite%20Glass%E2%80%90Ceramic%20from%20a%20Combined%20Use%20of%20X%E2%80%90Ray%20Diffraction,%20Solid%E2%80%90State%20NMR,%20and%20Microscopy&rft.jtitle=Helvetica%20chimica%20acta&rft.au=Liao,%20Wei%E2%80%90Chih&rft.date=2019-02&rft.volume=102&rft.issue=2&rft.epage=n/a&rft.issn=0018-019X&rft.eissn=1522-2675&rft_id=info:doi/10.1002/hlca.201800210&rft_dat=%3Cproquest_cross%3E2178922806%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3170-35a4e24979ac92859722f24cebee0f95f58573e3de8c7165c9bc6253d4f336573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2178922806&rft_id=info:pmid/&rfr_iscdi=true