Loading…
Nucleation and Crystal Formation in Lithium Disilicate‐Apatite Glass‐Ceramic from a Combined Use of X‐Ray Diffraction, Solid‐State NMR, and Microscopy
Glass‐ceramics are multi‐phase materials that are comprised of one amorphous phase and at least one crystalline phase. Their versatile performance and properties can be engineered by alterations of the three fundamental steps – formulation and production of the amorphous base glass, nucleation, and...
Saved in:
Published in: | Helvetica chimica acta 2019-02, Vol.102 (2), p.n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3170-35a4e24979ac92859722f24cebee0f95f58573e3de8c7165c9bc6253d4f336573 |
---|---|
cites | cdi_FETCH-LOGICAL-c3170-35a4e24979ac92859722f24cebee0f95f58573e3de8c7165c9bc6253d4f336573 |
container_end_page | n/a |
container_issue | 2 |
container_start_page | |
container_title | Helvetica chimica acta |
container_volume | 102 |
creator | Liao, Wei‐Chih Rampf, Markus Dittmer, Marc Copéret, Christophe Höland, Wolfram |
description | Glass‐ceramics are multi‐phase materials that are comprised of one amorphous phase and at least one crystalline phase. Their versatile performance and properties can be engineered by alterations of the three fundamental steps – formulation and production of the amorphous base glass, nucleation, and crystallization. Efforts have been made on syntheses of glass‐ceramics with different components, yet little is known about the details of nucleation and crystallization processes that are essential for tailoring glass‐ceramic properties. Herein, we investigate the nucleation and crystallization mechanisms of a multi‐component, that is SiO2‐Al2O3‐CaO‐Li2O‐K2O‐P2O5‐F, glass‐ceramic system by a combined use of powder X‐ray diffraction (pXRD), solid‐state nuclear magnetic resonance (NMR), and electron microscopic (EM) techniques. The role of P2O5 in the nucleation and crystallization processes is particularly studied. We show that the formation of lithium silicate crystals being independent of the P2O5‐associated crystals, and the separation of P2O5 phases into individual growth domains of lithium orthophosphate and fluorapatite. We also observe the non‐uniform distribution of fluorapatite particles that explains the opalescence effect of this glass‐ceramic. |
doi_str_mv | 10.1002/hlca.201800210 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2178922806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2178922806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-35a4e24979ac92859722f24cebee0f95f58573e3de8c7165c9bc6253d4f336573</originalsourceid><addsrcrecordid>eNqFUd1KwzAUDqLgnN56HfDWziRd2uZyVLcJ24TNwe5KliYso21m0iK98xF8Ah_OJzGzopdeHc75fs4HHwDXGA0wQuRuVwg-IAgnfsHoBPQwJSQgUUxPQQ_5e4Aw25yDC-f2CCHGUNwDH4tGFJLX2lSQVzlMbetqXsCxsWV31RWc6XqnmxLea6cLLXgtP9_eRweP1xJOCu6c31NpeakFVNaUkMPUlFtdyRyunYRGwY2nLHnrPZSyXBytb-HKFDr3wKr2nnAxX95-h5hrYY0T5tBegjPFCyevfmYfrMcPz-k0mD1NHtPRLBAhjlEQUj6UZMhixgUjCWUxIYoMhdxKiRSjiiY0DmWYy0TEOKKCbUVEaJgPVRhGHuqDm873YM1LI12d7U1jK_8yIzhOGCEJijxr0LGO8ZyVKjtYXXLbZhhlxw6yYwfZbwdewDrBqy5k-w87m87S0Z_2C7s1j1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178922806</pqid></control><display><type>article</type><title>Nucleation and Crystal Formation in Lithium Disilicate‐Apatite Glass‐Ceramic from a Combined Use of X‐Ray Diffraction, Solid‐State NMR, and Microscopy</title><source>Wiley</source><creator>Liao, Wei‐Chih ; Rampf, Markus ; Dittmer, Marc ; Copéret, Christophe ; Höland, Wolfram</creator><creatorcontrib>Liao, Wei‐Chih ; Rampf, Markus ; Dittmer, Marc ; Copéret, Christophe ; Höland, Wolfram</creatorcontrib><description>Glass‐ceramics are multi‐phase materials that are comprised of one amorphous phase and at least one crystalline phase. Their versatile performance and properties can be engineered by alterations of the three fundamental steps – formulation and production of the amorphous base glass, nucleation, and crystallization. Efforts have been made on syntheses of glass‐ceramics with different components, yet little is known about the details of nucleation and crystallization processes that are essential for tailoring glass‐ceramic properties. Herein, we investigate the nucleation and crystallization mechanisms of a multi‐component, that is SiO2‐Al2O3‐CaO‐Li2O‐K2O‐P2O5‐F, glass‐ceramic system by a combined use of powder X‐ray diffraction (pXRD), solid‐state nuclear magnetic resonance (NMR), and electron microscopic (EM) techniques. The role of P2O5 in the nucleation and crystallization processes is particularly studied. We show that the formation of lithium silicate crystals being independent of the P2O5‐associated crystals, and the separation of P2O5 phases into individual growth domains of lithium orthophosphate and fluorapatite. We also observe the non‐uniform distribution of fluorapatite particles that explains the opalescence effect of this glass‐ceramic.</description><identifier>ISSN: 0018-019X</identifier><identifier>EISSN: 1522-2675</identifier><identifier>DOI: 10.1002/hlca.201800210</identifier><language>eng</language><publisher>Zürich: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Amorphous materials ; Apatite ; Ceramic powders ; Ceramics ; Crystallization ; Crystals ; Domains ; Fluorapatite ; Glass ; glass-ceramics ; Lithium ; Lithium oxides ; lithium silicates ; Microscopy ; NMR ; Nuclear magnetic resonance ; Nucleation ; Opalescence ; Orthophosphate ; Phosphorus pentoxide ; Powder ; Silicon dioxide ; solid-state NMR ; X-ray diffraction</subject><ispartof>Helvetica chimica acta, 2019-02, Vol.102 (2), p.n/a</ispartof><rights>2019 Wiley‐VHCA AG, Zurich, Switzerland</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3170-35a4e24979ac92859722f24cebee0f95f58573e3de8c7165c9bc6253d4f336573</citedby><cites>FETCH-LOGICAL-c3170-35a4e24979ac92859722f24cebee0f95f58573e3de8c7165c9bc6253d4f336573</cites><orcidid>0000-0002-4656-6291 ; 0000-0001-6538-6344 ; 0000-0001-9660-3890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Liao, Wei‐Chih</creatorcontrib><creatorcontrib>Rampf, Markus</creatorcontrib><creatorcontrib>Dittmer, Marc</creatorcontrib><creatorcontrib>Copéret, Christophe</creatorcontrib><creatorcontrib>Höland, Wolfram</creatorcontrib><title>Nucleation and Crystal Formation in Lithium Disilicate‐Apatite Glass‐Ceramic from a Combined Use of X‐Ray Diffraction, Solid‐State NMR, and Microscopy</title><title>Helvetica chimica acta</title><description>Glass‐ceramics are multi‐phase materials that are comprised of one amorphous phase and at least one crystalline phase. Their versatile performance and properties can be engineered by alterations of the three fundamental steps – formulation and production of the amorphous base glass, nucleation, and crystallization. Efforts have been made on syntheses of glass‐ceramics with different components, yet little is known about the details of nucleation and crystallization processes that are essential for tailoring glass‐ceramic properties. Herein, we investigate the nucleation and crystallization mechanisms of a multi‐component, that is SiO2‐Al2O3‐CaO‐Li2O‐K2O‐P2O5‐F, glass‐ceramic system by a combined use of powder X‐ray diffraction (pXRD), solid‐state nuclear magnetic resonance (NMR), and electron microscopic (EM) techniques. The role of P2O5 in the nucleation and crystallization processes is particularly studied. We show that the formation of lithium silicate crystals being independent of the P2O5‐associated crystals, and the separation of P2O5 phases into individual growth domains of lithium orthophosphate and fluorapatite. We also observe the non‐uniform distribution of fluorapatite particles that explains the opalescence effect of this glass‐ceramic.</description><subject>Aluminum oxide</subject><subject>Amorphous materials</subject><subject>Apatite</subject><subject>Ceramic powders</subject><subject>Ceramics</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Domains</subject><subject>Fluorapatite</subject><subject>Glass</subject><subject>glass-ceramics</subject><subject>Lithium</subject><subject>Lithium oxides</subject><subject>lithium silicates</subject><subject>Microscopy</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nucleation</subject><subject>Opalescence</subject><subject>Orthophosphate</subject><subject>Phosphorus pentoxide</subject><subject>Powder</subject><subject>Silicon dioxide</subject><subject>solid-state NMR</subject><subject>X-ray diffraction</subject><issn>0018-019X</issn><issn>1522-2675</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUd1KwzAUDqLgnN56HfDWziRd2uZyVLcJ24TNwe5KliYso21m0iK98xF8Ah_OJzGzopdeHc75fs4HHwDXGA0wQuRuVwg-IAgnfsHoBPQwJSQgUUxPQQ_5e4Aw25yDC-f2CCHGUNwDH4tGFJLX2lSQVzlMbetqXsCxsWV31RWc6XqnmxLea6cLLXgtP9_eRweP1xJOCu6c31NpeakFVNaUkMPUlFtdyRyunYRGwY2nLHnrPZSyXBytb-HKFDr3wKr2nnAxX95-h5hrYY0T5tBegjPFCyevfmYfrMcPz-k0mD1NHtPRLBAhjlEQUj6UZMhixgUjCWUxIYoMhdxKiRSjiiY0DmWYy0TEOKKCbUVEaJgPVRhGHuqDm873YM1LI12d7U1jK_8yIzhOGCEJijxr0LGO8ZyVKjtYXXLbZhhlxw6yYwfZbwdewDrBqy5k-w87m87S0Z_2C7s1j1w</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Liao, Wei‐Chih</creator><creator>Rampf, Markus</creator><creator>Dittmer, Marc</creator><creator>Copéret, Christophe</creator><creator>Höland, Wolfram</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-4656-6291</orcidid><orcidid>https://orcid.org/0000-0001-6538-6344</orcidid><orcidid>https://orcid.org/0000-0001-9660-3890</orcidid></search><sort><creationdate>201902</creationdate><title>Nucleation and Crystal Formation in Lithium Disilicate‐Apatite Glass‐Ceramic from a Combined Use of X‐Ray Diffraction, Solid‐State NMR, and Microscopy</title><author>Liao, Wei‐Chih ; Rampf, Markus ; Dittmer, Marc ; Copéret, Christophe ; Höland, Wolfram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-35a4e24979ac92859722f24cebee0f95f58573e3de8c7165c9bc6253d4f336573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum oxide</topic><topic>Amorphous materials</topic><topic>Apatite</topic><topic>Ceramic powders</topic><topic>Ceramics</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Domains</topic><topic>Fluorapatite</topic><topic>Glass</topic><topic>glass-ceramics</topic><topic>Lithium</topic><topic>Lithium oxides</topic><topic>lithium silicates</topic><topic>Microscopy</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nucleation</topic><topic>Opalescence</topic><topic>Orthophosphate</topic><topic>Phosphorus pentoxide</topic><topic>Powder</topic><topic>Silicon dioxide</topic><topic>solid-state NMR</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Wei‐Chih</creatorcontrib><creatorcontrib>Rampf, Markus</creatorcontrib><creatorcontrib>Dittmer, Marc</creatorcontrib><creatorcontrib>Copéret, Christophe</creatorcontrib><creatorcontrib>Höland, Wolfram</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Helvetica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Wei‐Chih</au><au>Rampf, Markus</au><au>Dittmer, Marc</au><au>Copéret, Christophe</au><au>Höland, Wolfram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleation and Crystal Formation in Lithium Disilicate‐Apatite Glass‐Ceramic from a Combined Use of X‐Ray Diffraction, Solid‐State NMR, and Microscopy</atitle><jtitle>Helvetica chimica acta</jtitle><date>2019-02</date><risdate>2019</risdate><volume>102</volume><issue>2</issue><epage>n/a</epage><issn>0018-019X</issn><eissn>1522-2675</eissn><abstract>Glass‐ceramics are multi‐phase materials that are comprised of one amorphous phase and at least one crystalline phase. Their versatile performance and properties can be engineered by alterations of the three fundamental steps – formulation and production of the amorphous base glass, nucleation, and crystallization. Efforts have been made on syntheses of glass‐ceramics with different components, yet little is known about the details of nucleation and crystallization processes that are essential for tailoring glass‐ceramic properties. Herein, we investigate the nucleation and crystallization mechanisms of a multi‐component, that is SiO2‐Al2O3‐CaO‐Li2O‐K2O‐P2O5‐F, glass‐ceramic system by a combined use of powder X‐ray diffraction (pXRD), solid‐state nuclear magnetic resonance (NMR), and electron microscopic (EM) techniques. The role of P2O5 in the nucleation and crystallization processes is particularly studied. We show that the formation of lithium silicate crystals being independent of the P2O5‐associated crystals, and the separation of P2O5 phases into individual growth domains of lithium orthophosphate and fluorapatite. We also observe the non‐uniform distribution of fluorapatite particles that explains the opalescence effect of this glass‐ceramic.</abstract><cop>Zürich</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/hlca.201800210</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4656-6291</orcidid><orcidid>https://orcid.org/0000-0001-6538-6344</orcidid><orcidid>https://orcid.org/0000-0001-9660-3890</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-019X |
ispartof | Helvetica chimica acta, 2019-02, Vol.102 (2), p.n/a |
issn | 0018-019X 1522-2675 |
language | eng |
recordid | cdi_proquest_journals_2178922806 |
source | Wiley |
subjects | Aluminum oxide Amorphous materials Apatite Ceramic powders Ceramics Crystallization Crystals Domains Fluorapatite Glass glass-ceramics Lithium Lithium oxides lithium silicates Microscopy NMR Nuclear magnetic resonance Nucleation Opalescence Orthophosphate Phosphorus pentoxide Powder Silicon dioxide solid-state NMR X-ray diffraction |
title | Nucleation and Crystal Formation in Lithium Disilicate‐Apatite Glass‐Ceramic from a Combined Use of X‐Ray Diffraction, Solid‐State NMR, and Microscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleation%20and%20Crystal%20Formation%20in%20Lithium%20Disilicate%E2%80%90Apatite%20Glass%E2%80%90Ceramic%20from%20a%20Combined%20Use%20of%20X%E2%80%90Ray%20Diffraction,%20Solid%E2%80%90State%20NMR,%20and%20Microscopy&rft.jtitle=Helvetica%20chimica%20acta&rft.au=Liao,%20Wei%E2%80%90Chih&rft.date=2019-02&rft.volume=102&rft.issue=2&rft.epage=n/a&rft.issn=0018-019X&rft.eissn=1522-2675&rft_id=info:doi/10.1002/hlca.201800210&rft_dat=%3Cproquest_cross%3E2178922806%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3170-35a4e24979ac92859722f24cebee0f95f58573e3de8c7165c9bc6253d4f336573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2178922806&rft_id=info:pmid/&rfr_iscdi=true |