Loading…

A multivariate nonparametric test of independence

A new nonparametric approach to the problem of testing the joint independence of two or more random vectors in arbitrary dimension is developed based on a measure of association determined by interpoint distances. The population independence coefficient takes values between 0 and 1, and equals zero...

Full description

Saved in:
Bibliographic Details
Published in:Journal of multivariate analysis 2006-09, Vol.97 (8), p.1742-1756
Main Authors: Bakirov, Nail K., Rizzo, Maria L., Székely, Gábor J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new nonparametric approach to the problem of testing the joint independence of two or more random vectors in arbitrary dimension is developed based on a measure of association determined by interpoint distances. The population independence coefficient takes values between 0 and 1, and equals zero if and only if the vectors are independent. We show that the corresponding statistic has a finite limit distribution if and only if the two random vectors are independent; thus we have a consistent test for independence. The coefficient is an increasing function of the absolute value of product moment correlation in the bivariate normal case, and coincides with the absolute value of correlation in the Bernoulli case. A simple modification of the statistic is affine invariant. The independence coefficient and the proposed statistic both have a natural extension to testing the independence of several random vectors. Empirical performance of the test is illustrated via a comparative Monte Carlo study.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2005.10.005