Loading…
On the relative projective space
Let $(C,\otimes,1)$ be an abelian symmetric monoidal category satisfying certain exactness conditions. In this paper we define a presheaf $Proj{C}$ on the category of commutative algebras in $C$ and we prove that this functor is a $C$-scheme in the sense of B. Toen and M. Vaquie. We give another def...
Saved in:
Published in: | Theory and applications of categories 2019-01, Vol.34 (3), p.58 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let $(C,\otimes,1)$ be an abelian symmetric monoidal category satisfying certain exactness conditions. In this paper we define a presheaf $Proj{C}$ on the category of commutative algebras in $C$ and we prove that this functor is a $C$-scheme in the sense of B. Toen and M. Vaquie. We give another definition and prove that they give isomorphic $C$-schemes. This construction gives us a context of non-associative relative algebraic geometry. The most important example of the construction is the octonionic projective space. |
---|---|
ISSN: | 1201-561X |