Loading…

Dynamical symmetry and breathers in a two-dimensional Bose gas

A fluid is said to be \emph{scale-invariant} when its interaction and kinetic energies have the same scaling in a dilation operation. In association with the more general conformal invariance, scale invariance provides a dynamical symmetry which has profound consequences both on the equilibrium prop...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-04
Main Authors: Saint-Jalm, Raphaël, Castilho, Patricia C M, Édouard Le Cerf, Bakkali-Hassani, Brice, Jean-Loup Ville, Nascimbene, Sylvain, Beugnon, Jérôme, Dalibard, Jean
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A fluid is said to be \emph{scale-invariant} when its interaction and kinetic energies have the same scaling in a dilation operation. In association with the more general conformal invariance, scale invariance provides a dynamical symmetry which has profound consequences both on the equilibrium properties of the fluid and its time evolution. Here we investigate experimentally the far-from-equilibrium dynamics of a cold two-dimensional rubidium Bose gas. We operate in the regime where the gas is accurately described by a classical field obeying the Gross--Pitaevskii equation, and thus possesses a dynamical symmetry described by the Lorentz group SO(2,1). With the further simplification provided by superfluid hydrodynamics, we show how to relate the evolutions observed for different initial sizes, atom numbers, trap frequencies and interaction parameters by a scaling transform. Finally we show that some specific initial shapes - uniformly-filled triangles or disks - may lead to a periodic evolution, corresponding to a novel type of breather for the two-dimensional Gross--Pitaevskii equation.
ISSN:2331-8422
DOI:10.48550/arxiv.1903.04528