Loading…

Rearrangements in minisatellite sequences induced by aflatoxin B1 in a metabolically competent strain of Saccharomyces cerevisiae

The role of aflatoxin B1 (AFB1) in the induction of rearrangements affecting minisatellite sequences was studied in an in vitro yeast model. The Saccharomyces cerevisiae strain used expresses human cytochrome P450 1A2 and NADPH-cytochrome P450 oxidoreductase and has previously been used to study gen...

Full description

Saved in:
Bibliographic Details
Published in:Carcinogenesis (New York) 1998-09, Vol.19 (9), p.1673-1678
Main Authors: KAPLANSKI, C, WILD, C. P, SENGSTAG, C
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The role of aflatoxin B1 (AFB1) in the induction of rearrangements affecting minisatellite sequences was studied in an in vitro yeast model. The Saccharomyces cerevisiae strain used expresses human cytochrome P450 1A2 and NADPH-cytochrome P450 oxidoreductase and has previously been used to study genetic recombination events induced by AFB1. DNA multilocus fingerprinting was performed using probe M13 core hybridizing to a set of hypervariable minisatellite sequences in S. cerevisiae. Frequent spontaneous genomic alterations that affect the minisatellite fingerprint pattern were observed. Control cultures showed 15.8% rearrangements in minisatellites, and this frequency increased to 40.0% in cultures exposed to AFB1 (80 microg/ml). A total of approximately 29 minisatellite loci were visualized for each culture. Given the number of cultures examined (40 AFB1-treated and 38 controls) the rearrangement frequency per detectable minisatellite was 2.59% in the AFB1-treated group and 0.73% in the control group, which represents a statistically significant (P = 0.001) difference. Thus, our data strongly suggest that AFB1 can promote the genetic events responsible for minisatellite rearrangements in the yeast genome. Such genetic rearrangements may be important events during the etiology of liver carcinogenesis in people chronically exposed to dietary aflatoxins.
ISSN:0143-3334
1460-2180
1460-2180
DOI:10.1093/carcin/19.9.1673