Loading…

Defining the Functional Role of Na V 1.7 in Human Nociception

Loss-of-function mutations in Na 1.7 cause congenital insensitivity to pain (CIP); this voltage-gated sodium channel is therefore a key target for analgesic drug development. Utilizing a multi-modal approach, we investigated how Na 1.7 mutations lead to human pain insensitivity. Skin biopsy and micr...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2019-03, Vol.101 (5), p.905
Main Authors: McDermott, Lucy A, Weir, Greg A, Themistocleous, Andreas C, Segerdahl, Andrew R, Blesneac, Iulia, Baskozos, Georgios, Clark, Alex J, Millar, Val, Peck, Liam J, Ebner, Daniel, Tracey, Irene, Serra, Jordi, Bennett, David L
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 5
container_start_page 905
container_title Neuron (Cambridge, Mass.)
container_volume 101
creator McDermott, Lucy A
Weir, Greg A
Themistocleous, Andreas C
Segerdahl, Andrew R
Blesneac, Iulia
Baskozos, Georgios
Clark, Alex J
Millar, Val
Peck, Liam J
Ebner, Daniel
Tracey, Irene
Serra, Jordi
Bennett, David L
description Loss-of-function mutations in Na 1.7 cause congenital insensitivity to pain (CIP); this voltage-gated sodium channel is therefore a key target for analgesic drug development. Utilizing a multi-modal approach, we investigated how Na 1.7 mutations lead to human pain insensitivity. Skin biopsy and microneurography revealed an absence of C-fiber nociceptors in CIP patients, reflected in a reduced cortical response to capsaicin on fMRI. Epitope tagging of endogenous Na 1.7 revealed the channel to be localized at the soma membrane, axon, axon terminals, and the nodes of Ranvier of induced pluripotent stem cell (iPSC) nociceptors. CIP patient-derived iPSC nociceptors exhibited an inability to properly respond to depolarizing stimuli, demonstrating that Na 1.7 is a key regulator of excitability. Using this iPSC nociceptor platform, we found that some Na 1.7 blockers undergoing clinical trials lack specificity. CIP, therefore, arises due to a profound loss of functional nociceptors, which is more pronounced than that reported in rodent models, or likely achievable following acute pharmacological blockade. VIDEO ABSTRACT.
doi_str_mv 10.1016/j.neuron.2019.01.047
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2193597434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193597434</sourcerecordid><originalsourceid>FETCH-LOGICAL-p121t-d3ec95184b23f4f99c5ad1563bab774cf2494b653d69c5b505b577371c5a35d23</originalsourceid><addsrcrecordid>eNo1j01LxDAYhIMobl39ByIBz61589Hse_Agq-sKywqiXkuaptrSJrUfB_-9FdfDMId5GGYIuQSWAIP0pk68m_rgE84AEwYJk_qIRMBQxxIQj0nEVpjGKddiQc6GoWYMpEI4JQvBNCpkPCK3966sfOU_6Pjp6GbydqyCNw19CY2joaR7Q98pJJpWnm6n1ni6D7ayrvvlzslJaZrBXRx8Sd42D6_rbbx7fnxa3-3iDjiMcSGcRQUrmXNRyhLRKlOASkVucq2lLblEmadKFOkc5YrN0lpomDmhCi6W5Pqvt-vD1-SGMavD1M8zh4wDCoVaCjlTVwdqyltXZF1ftab_zv7fih9DkFWV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193597434</pqid></control><display><type>article</type><title>Defining the Functional Role of Na V 1.7 in Human Nociception</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>McDermott, Lucy A ; Weir, Greg A ; Themistocleous, Andreas C ; Segerdahl, Andrew R ; Blesneac, Iulia ; Baskozos, Georgios ; Clark, Alex J ; Millar, Val ; Peck, Liam J ; Ebner, Daniel ; Tracey, Irene ; Serra, Jordi ; Bennett, David L</creator><creatorcontrib>McDermott, Lucy A ; Weir, Greg A ; Themistocleous, Andreas C ; Segerdahl, Andrew R ; Blesneac, Iulia ; Baskozos, Georgios ; Clark, Alex J ; Millar, Val ; Peck, Liam J ; Ebner, Daniel ; Tracey, Irene ; Serra, Jordi ; Bennett, David L</creatorcontrib><description>Loss-of-function mutations in Na 1.7 cause congenital insensitivity to pain (CIP); this voltage-gated sodium channel is therefore a key target for analgesic drug development. Utilizing a multi-modal approach, we investigated how Na 1.7 mutations lead to human pain insensitivity. Skin biopsy and microneurography revealed an absence of C-fiber nociceptors in CIP patients, reflected in a reduced cortical response to capsaicin on fMRI. Epitope tagging of endogenous Na 1.7 revealed the channel to be localized at the soma membrane, axon, axon terminals, and the nodes of Ranvier of induced pluripotent stem cell (iPSC) nociceptors. CIP patient-derived iPSC nociceptors exhibited an inability to properly respond to depolarizing stimuli, demonstrating that Na 1.7 is a key regulator of excitability. Using this iPSC nociceptor platform, we found that some Na 1.7 blockers undergoing clinical trials lack specificity. CIP, therefore, arises due to a profound loss of functional nociceptors, which is more pronounced than that reported in rodent models, or likely achievable following acute pharmacological blockade. VIDEO ABSTRACT.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2019.01.047</identifier><identifier>PMID: 30795902</identifier><language>eng</language><publisher>United States: Elsevier Limited</publisher><subject>Action Potentials ; Adult ; Analgesics ; Animal models ; Axons - metabolism ; Biopsy ; Brain research ; Capsaicin ; Cell Line ; Cells, Cultured ; Clinical trials ; Congenital defects ; Congenital diseases ; Consortia ; Cortex ; Depolarization ; Diabetes ; Diabetic neuropathy ; Drug development ; Epitopes ; Excitability ; Female ; Functional magnetic resonance imaging ; Genomes ; Genotype &amp; phenotype ; Humans ; Induced Pluripotent Stem Cells - metabolism ; Induced Pluripotent Stem Cells - physiology ; Innovations ; Male ; Microneurography ; Mutation ; NAV1.7 Voltage-Gated Sodium Channel - genetics ; NAV1.7 Voltage-Gated Sodium Channel - metabolism ; Nervous system ; Neurons ; Neurosciences ; Nociception ; Nociceptors ; Nociceptors - metabolism ; Nociceptors - pathology ; Nociceptors - physiology ; Nodes of Ranvier ; Pain ; Pain Insensitivity, Congenital - genetics ; Pain Insensitivity, Congenital - metabolism ; Pain Insensitivity, Congenital - physiopathology ; Pain perception ; Pluripotency ; Presynapse ; Ranvier's Nodes - metabolism ; Skin ; Sodium Channel Blockers - pharmacology ; Sodium channels (voltage-gated) ; Stem cells</subject><ispartof>Neuron (Cambridge, Mass.), 2019-03, Vol.101 (5), p.905</ispartof><rights>Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2019. The Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30795902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McDermott, Lucy A</creatorcontrib><creatorcontrib>Weir, Greg A</creatorcontrib><creatorcontrib>Themistocleous, Andreas C</creatorcontrib><creatorcontrib>Segerdahl, Andrew R</creatorcontrib><creatorcontrib>Blesneac, Iulia</creatorcontrib><creatorcontrib>Baskozos, Georgios</creatorcontrib><creatorcontrib>Clark, Alex J</creatorcontrib><creatorcontrib>Millar, Val</creatorcontrib><creatorcontrib>Peck, Liam J</creatorcontrib><creatorcontrib>Ebner, Daniel</creatorcontrib><creatorcontrib>Tracey, Irene</creatorcontrib><creatorcontrib>Serra, Jordi</creatorcontrib><creatorcontrib>Bennett, David L</creatorcontrib><title>Defining the Functional Role of Na V 1.7 in Human Nociception</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Loss-of-function mutations in Na 1.7 cause congenital insensitivity to pain (CIP); this voltage-gated sodium channel is therefore a key target for analgesic drug development. Utilizing a multi-modal approach, we investigated how Na 1.7 mutations lead to human pain insensitivity. Skin biopsy and microneurography revealed an absence of C-fiber nociceptors in CIP patients, reflected in a reduced cortical response to capsaicin on fMRI. Epitope tagging of endogenous Na 1.7 revealed the channel to be localized at the soma membrane, axon, axon terminals, and the nodes of Ranvier of induced pluripotent stem cell (iPSC) nociceptors. CIP patient-derived iPSC nociceptors exhibited an inability to properly respond to depolarizing stimuli, demonstrating that Na 1.7 is a key regulator of excitability. Using this iPSC nociceptor platform, we found that some Na 1.7 blockers undergoing clinical trials lack specificity. CIP, therefore, arises due to a profound loss of functional nociceptors, which is more pronounced than that reported in rodent models, or likely achievable following acute pharmacological blockade. VIDEO ABSTRACT.</description><subject>Action Potentials</subject><subject>Adult</subject><subject>Analgesics</subject><subject>Animal models</subject><subject>Axons - metabolism</subject><subject>Biopsy</subject><subject>Brain research</subject><subject>Capsaicin</subject><subject>Cell Line</subject><subject>Cells, Cultured</subject><subject>Clinical trials</subject><subject>Congenital defects</subject><subject>Congenital diseases</subject><subject>Consortia</subject><subject>Cortex</subject><subject>Depolarization</subject><subject>Diabetes</subject><subject>Diabetic neuropathy</subject><subject>Drug development</subject><subject>Epitopes</subject><subject>Excitability</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Induced Pluripotent Stem Cells - physiology</subject><subject>Innovations</subject><subject>Male</subject><subject>Microneurography</subject><subject>Mutation</subject><subject>NAV1.7 Voltage-Gated Sodium Channel - genetics</subject><subject>NAV1.7 Voltage-Gated Sodium Channel - metabolism</subject><subject>Nervous system</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Nociception</subject><subject>Nociceptors</subject><subject>Nociceptors - metabolism</subject><subject>Nociceptors - pathology</subject><subject>Nociceptors - physiology</subject><subject>Nodes of Ranvier</subject><subject>Pain</subject><subject>Pain Insensitivity, Congenital - genetics</subject><subject>Pain Insensitivity, Congenital - metabolism</subject><subject>Pain Insensitivity, Congenital - physiopathology</subject><subject>Pain perception</subject><subject>Pluripotency</subject><subject>Presynapse</subject><subject>Ranvier's Nodes - metabolism</subject><subject>Skin</subject><subject>Sodium Channel Blockers - pharmacology</subject><subject>Sodium channels (voltage-gated)</subject><subject>Stem cells</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo1j01LxDAYhIMobl39ByIBz61589Hse_Agq-sKywqiXkuaptrSJrUfB_-9FdfDMId5GGYIuQSWAIP0pk68m_rgE84AEwYJk_qIRMBQxxIQj0nEVpjGKddiQc6GoWYMpEI4JQvBNCpkPCK3966sfOU_6Pjp6GbydqyCNw19CY2joaR7Q98pJJpWnm6n1ni6D7ayrvvlzslJaZrBXRx8Sd42D6_rbbx7fnxa3-3iDjiMcSGcRQUrmXNRyhLRKlOASkVucq2lLblEmadKFOkc5YrN0lpomDmhCi6W5Pqvt-vD1-SGMavD1M8zh4wDCoVaCjlTVwdqyltXZF1ftab_zv7fih9DkFWV</recordid><startdate>20190306</startdate><enddate>20190306</enddate><creator>McDermott, Lucy A</creator><creator>Weir, Greg A</creator><creator>Themistocleous, Andreas C</creator><creator>Segerdahl, Andrew R</creator><creator>Blesneac, Iulia</creator><creator>Baskozos, Georgios</creator><creator>Clark, Alex J</creator><creator>Millar, Val</creator><creator>Peck, Liam J</creator><creator>Ebner, Daniel</creator><creator>Tracey, Irene</creator><creator>Serra, Jordi</creator><creator>Bennett, David L</creator><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20190306</creationdate><title>Defining the Functional Role of Na V 1.7 in Human Nociception</title><author>McDermott, Lucy A ; Weir, Greg A ; Themistocleous, Andreas C ; Segerdahl, Andrew R ; Blesneac, Iulia ; Baskozos, Georgios ; Clark, Alex J ; Millar, Val ; Peck, Liam J ; Ebner, Daniel ; Tracey, Irene ; Serra, Jordi ; Bennett, David L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p121t-d3ec95184b23f4f99c5ad1563bab774cf2494b653d69c5b505b577371c5a35d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Action Potentials</topic><topic>Adult</topic><topic>Analgesics</topic><topic>Animal models</topic><topic>Axons - metabolism</topic><topic>Biopsy</topic><topic>Brain research</topic><topic>Capsaicin</topic><topic>Cell Line</topic><topic>Cells, Cultured</topic><topic>Clinical trials</topic><topic>Congenital defects</topic><topic>Congenital diseases</topic><topic>Consortia</topic><topic>Cortex</topic><topic>Depolarization</topic><topic>Diabetes</topic><topic>Diabetic neuropathy</topic><topic>Drug development</topic><topic>Epitopes</topic><topic>Excitability</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Induced Pluripotent Stem Cells - physiology</topic><topic>Innovations</topic><topic>Male</topic><topic>Microneurography</topic><topic>Mutation</topic><topic>NAV1.7 Voltage-Gated Sodium Channel - genetics</topic><topic>NAV1.7 Voltage-Gated Sodium Channel - metabolism</topic><topic>Nervous system</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Nociception</topic><topic>Nociceptors</topic><topic>Nociceptors - metabolism</topic><topic>Nociceptors - pathology</topic><topic>Nociceptors - physiology</topic><topic>Nodes of Ranvier</topic><topic>Pain</topic><topic>Pain Insensitivity, Congenital - genetics</topic><topic>Pain Insensitivity, Congenital - metabolism</topic><topic>Pain Insensitivity, Congenital - physiopathology</topic><topic>Pain perception</topic><topic>Pluripotency</topic><topic>Presynapse</topic><topic>Ranvier's Nodes - metabolism</topic><topic>Skin</topic><topic>Sodium Channel Blockers - pharmacology</topic><topic>Sodium channels (voltage-gated)</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McDermott, Lucy A</creatorcontrib><creatorcontrib>Weir, Greg A</creatorcontrib><creatorcontrib>Themistocleous, Andreas C</creatorcontrib><creatorcontrib>Segerdahl, Andrew R</creatorcontrib><creatorcontrib>Blesneac, Iulia</creatorcontrib><creatorcontrib>Baskozos, Georgios</creatorcontrib><creatorcontrib>Clark, Alex J</creatorcontrib><creatorcontrib>Millar, Val</creatorcontrib><creatorcontrib>Peck, Liam J</creatorcontrib><creatorcontrib>Ebner, Daniel</creatorcontrib><creatorcontrib>Tracey, Irene</creatorcontrib><creatorcontrib>Serra, Jordi</creatorcontrib><creatorcontrib>Bennett, David L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McDermott, Lucy A</au><au>Weir, Greg A</au><au>Themistocleous, Andreas C</au><au>Segerdahl, Andrew R</au><au>Blesneac, Iulia</au><au>Baskozos, Georgios</au><au>Clark, Alex J</au><au>Millar, Val</au><au>Peck, Liam J</au><au>Ebner, Daniel</au><au>Tracey, Irene</au><au>Serra, Jordi</au><au>Bennett, David L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining the Functional Role of Na V 1.7 in Human Nociception</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2019-03-06</date><risdate>2019</risdate><volume>101</volume><issue>5</issue><spage>905</spage><pages>905-</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Loss-of-function mutations in Na 1.7 cause congenital insensitivity to pain (CIP); this voltage-gated sodium channel is therefore a key target for analgesic drug development. Utilizing a multi-modal approach, we investigated how Na 1.7 mutations lead to human pain insensitivity. Skin biopsy and microneurography revealed an absence of C-fiber nociceptors in CIP patients, reflected in a reduced cortical response to capsaicin on fMRI. Epitope tagging of endogenous Na 1.7 revealed the channel to be localized at the soma membrane, axon, axon terminals, and the nodes of Ranvier of induced pluripotent stem cell (iPSC) nociceptors. CIP patient-derived iPSC nociceptors exhibited an inability to properly respond to depolarizing stimuli, demonstrating that Na 1.7 is a key regulator of excitability. Using this iPSC nociceptor platform, we found that some Na 1.7 blockers undergoing clinical trials lack specificity. CIP, therefore, arises due to a profound loss of functional nociceptors, which is more pronounced than that reported in rodent models, or likely achievable following acute pharmacological blockade. VIDEO ABSTRACT.</abstract><cop>United States</cop><pub>Elsevier Limited</pub><pmid>30795902</pmid><doi>10.1016/j.neuron.2019.01.047</doi></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2019-03, Vol.101 (5), p.905
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_journals_2193597434
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Action Potentials
Adult
Analgesics
Animal models
Axons - metabolism
Biopsy
Brain research
Capsaicin
Cell Line
Cells, Cultured
Clinical trials
Congenital defects
Congenital diseases
Consortia
Cortex
Depolarization
Diabetes
Diabetic neuropathy
Drug development
Epitopes
Excitability
Female
Functional magnetic resonance imaging
Genomes
Genotype & phenotype
Humans
Induced Pluripotent Stem Cells - metabolism
Induced Pluripotent Stem Cells - physiology
Innovations
Male
Microneurography
Mutation
NAV1.7 Voltage-Gated Sodium Channel - genetics
NAV1.7 Voltage-Gated Sodium Channel - metabolism
Nervous system
Neurons
Neurosciences
Nociception
Nociceptors
Nociceptors - metabolism
Nociceptors - pathology
Nociceptors - physiology
Nodes of Ranvier
Pain
Pain Insensitivity, Congenital - genetics
Pain Insensitivity, Congenital - metabolism
Pain Insensitivity, Congenital - physiopathology
Pain perception
Pluripotency
Presynapse
Ranvier's Nodes - metabolism
Skin
Sodium Channel Blockers - pharmacology
Sodium channels (voltage-gated)
Stem cells
title Defining the Functional Role of Na V 1.7 in Human Nociception
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20the%20Functional%20Role%20of%20Na%20V%201.7%20in%20Human%20Nociception&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=McDermott,%20Lucy%20A&rft.date=2019-03-06&rft.volume=101&rft.issue=5&rft.spage=905&rft.pages=905-&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2019.01.047&rft_dat=%3Cproquest_pubme%3E2193597434%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p121t-d3ec95184b23f4f99c5ad1563bab774cf2494b653d69c5b505b577371c5a35d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2193597434&rft_id=info:pmid/30795902&rfr_iscdi=true