Loading…

Sensor Fault Detection and Diagnosis for an Unmanned Quadrotor Helicopter

This paper proposes a new nonlinear fault detection and diagnosis (FDD) scheme for the inertial measurement unit (IMU) sensor of an unmanned quadrotor helicopter (UQH). To mitigate the impact of model uncertainties, the kinematic model of an UQH rather than the dynamic model is employed to design th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & robotic systems 2019-12, Vol.96 (3-4), p.555-572
Main Authors: Zhong, Yujiang, Zhang, Wei, Zhang, Youmin, Zuo, Junyi, Zhan, Hao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a new nonlinear fault detection and diagnosis (FDD) scheme for the inertial measurement unit (IMU) sensor of an unmanned quadrotor helicopter (UQH). To mitigate the impact of model uncertainties, the kinematic model of an UQH rather than the dynamic model is employed to design the FDD scheme. A two-stage extended Kalman filter (TSEKF) is developed for detecting, isolating and identifying IMU sensor faults. Considering that the TSEKF is insensitive to time-varying faults, two adaptive two-stage extended Kalman filters are further proposed by integrating TSEKF with different forgetting factor schemes. Several experiments have been designed and implemented on an UQH platform to test the proposed FDD scheme, where bias fault, drift fault and oscillatory fault are considered. The results demonstrate that the proposed FDD methods are effective for detecting and estimating the IMU sensor faults in different fault scenarios.
ISSN:0921-0296
1573-0409
DOI:10.1007/s10846-019-01002-4