Loading…
Thermal and structural instability of sodium-iron carbonophosphate ball milled with carbon
Pristine Na3FePO4CO3 (NFPC) with the monoclinic structure and the P21/m space group was prepared by hydrothermal synthesis at 120 °C. To increase the conductivity of NFPC, it was ball milled with carbon using a SPEX 8000 mill. Crystal and local structure, morphology, thermal stability, conductivity...
Saved in:
Published in: | Electrochimica acta 2019-04, Vol.302, p.119-129 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pristine Na3FePO4CO3 (NFPC) with the monoclinic structure and the P21/m space group was prepared by hydrothermal synthesis at 120 °C. To increase the conductivity of NFPC, it was ball milled with carbon using a SPEX 8000 mill. Crystal and local structure, morphology, thermal stability, conductivity and electrochemical properties of NFPC and NFPC/C composites were studied by XRD, DSC/TG, FTIR, Mӧssbauer spectroscopy, 23NMR spectroscopy, magnetic measurements, SEM, EIS and galvanostatic cycling. It has been shown that the as-prepared NFPC is stable below 500 °C and then decomposes to Fe3O4 and Na3PO4. Ball milling of NFPC with and without carbon leads to its partial decomposition with the formation of nanosized superparamagnetic Fe3O4 particles and a significant structural disordering, though the crystal symmetry maintains unchanged. Due to high sensitivity of NFPC to air, pristine sample contains some portion of the Fe3+ ions; it increases after ball milling. As a result, all samples are able to cycle starting both with charge and discharge. NFPC shows high stability upon cycling with the specific discharge capacity close to the theoretical one (96 mA·h·g−1 for one-electron reaction). Though the capacity of the NFPC/C composites is slightly lower at low cycling rate than that of pristine NFPC, they show better high-rate performance due to improved conductivity via the formation of the highly conductive carbon matrix. As-established low lattice volume variation upon (de)intercalation of the sodium ions along with realization of a single-phase mechanism is responsible for a long cycle life of the NFPC/C cathode material.
[Display omitted]
•NFPC/C composites were prepared by ball milling NFPC with carbon using SPEX 8000.•Structural disordering and partial decomposition of NFPC occurs upon ball milling.•NFPC/C composites show better high-rate performance due to improved conductivity.•A single-phase mechanism of sodium (de)intercalation is established. |
---|---|
ISSN: | 0013-4686 1873-3859 |
DOI: | 10.1016/j.electacta.2019.02.001 |