Loading…
Zeros and interpolation by universal Taylor series on simply connected domains
By investigating the relation between growth and value distribution A. Melas established a qualitative version of a Picard type theorem for universal Taylor series, that is: every universal Taylor series on the open unit disk $D$, assumes every complex value with at most one exception on infinite su...
Saved in:
Published in: | Mathematical proceedings of the Cambridge Philosophical Society 2005-07, Vol.139 (1), p.149-159 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | By investigating the relation between growth and value distribution A. Melas established a qualitative version of a Picard type theorem for universal Taylor series, that is: every universal Taylor series on the open unit disk $D$, assumes every complex value with at most one exception on infinite subsets of $D$ that approach the boundary of $D$ rather slowly. On the other hand, we show that there are universal Taylor series on $D$ such that the infinite subset of $D$ on which exactly one value is assumed, can approach the boundary of $D$ arbitrarily fast. Hence in view of Melas' work our result is the best possible. We also study the problem of interpolation by universal Taylor series. |
---|---|
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004105008406 |