Loading…
Zeros and interpolation by universal Taylor series on simply connected domains
By investigating the relation between growth and value distribution A. Melas established a qualitative version of a Picard type theorem for universal Taylor series, that is: every universal Taylor series on the open unit disk $D$, assumes every complex value with at most one exception on infinite su...
Saved in:
Published in: | Mathematical proceedings of the Cambridge Philosophical Society 2005-07, Vol.139 (1), p.149-159 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-8246bdb3afb6c56105a1be7fe75d03dca800631bb45b3f0e489b04591278d0ff3 |
---|---|
cites | |
container_end_page | 159 |
container_issue | 1 |
container_start_page | 149 |
container_title | Mathematical proceedings of the Cambridge Philosophical Society |
container_volume | 139 |
creator | COSTAKIS, GEORGE |
description | By investigating the relation between growth and value distribution A. Melas established a qualitative version of a Picard type theorem for universal Taylor series, that is: every universal Taylor series on the open unit disk $D$, assumes every complex value with at most one exception on infinite subsets of $D$ that approach the boundary of $D$ rather slowly. On the other hand, we show that there are universal Taylor series on $D$ such that the infinite subset of $D$ on which exactly one value is assumed, can approach the boundary of $D$ arbitrarily fast. Hence in view of Melas' work our result is the best possible. We also study the problem of interpolation by universal Taylor series. |
doi_str_mv | 10.1017/S0305004105008406 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_220000107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004105008406</cupid><sourcerecordid>1402681251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-8246bdb3afb6c56105a1be7fe75d03dca800631bb45b3f0e489b04591278d0ff3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcLO4B9bxI8mRZ0FqQYgiJC6WHTvIJS_sFJG_J1ErOCAuu4eZ2ZlZhI4JnBIgydkTUOAAjIwzZSB20IQwkUUpCLaLJiMcjfg-OghhBQA0IzBB96_WNwGr2mBXd9a3Tak619RY93hdu0_rgyrxUvVl43Gw3tmABzS4qi17nDd1bfPOGmyaSrk6HKK9QpXBHm33FD3fXC8vb6P5w-zu8nwe5ZSzLkpjJrTRVBVa5FwMoRXRNilswg1Qk6sUQFCiNeOaFmBZmmlgPCNxkhooCjpFJ5u7rW8-1jZ0ctWsfT1YyjgeygGBZCCRDSkfKgZvC9l6VynfSwJy_Jr887VBE200LnT260eg_LsUCU24FLNHebHgi8UVe5HxwKdbD1Vp78yb_U3yv8s3pnB9hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220000107</pqid></control><display><type>article</type><title>Zeros and interpolation by universal Taylor series on simply connected domains</title><source>Cambridge University Press</source><creator>COSTAKIS, GEORGE</creator><creatorcontrib>COSTAKIS, GEORGE</creatorcontrib><description>By investigating the relation between growth and value distribution A. Melas established a qualitative version of a Picard type theorem for universal Taylor series, that is: every universal Taylor series on the open unit disk $D$, assumes every complex value with at most one exception on infinite subsets of $D$ that approach the boundary of $D$ rather slowly. On the other hand, we show that there are universal Taylor series on $D$ such that the infinite subset of $D$ on which exactly one value is assumed, can approach the boundary of $D$ arbitrarily fast. Hence in view of Melas' work our result is the best possible. We also study the problem of interpolation by universal Taylor series.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004105008406</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 2005-07, Vol.139 (1), p.149-159</ispartof><rights>2005 Cambridge Philosophical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-8246bdb3afb6c56105a1be7fe75d03dca800631bb45b3f0e489b04591278d0ff3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004105008406/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids></links><search><creatorcontrib>COSTAKIS, GEORGE</creatorcontrib><title>Zeros and interpolation by universal Taylor series on simply connected domains</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>By investigating the relation between growth and value distribution A. Melas established a qualitative version of a Picard type theorem for universal Taylor series, that is: every universal Taylor series on the open unit disk $D$, assumes every complex value with at most one exception on infinite subsets of $D$ that approach the boundary of $D$ rather slowly. On the other hand, we show that there are universal Taylor series on $D$ such that the infinite subset of $D$ on which exactly one value is assumed, can approach the boundary of $D$ arbitrarily fast. Hence in view of Melas' work our result is the best possible. We also study the problem of interpolation by universal Taylor series.</description><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMIHcLO4B9bxI8mRZ0FqQYgiJC6WHTvIJS_sFJG_J1ErOCAuu4eZ2ZlZhI4JnBIgydkTUOAAjIwzZSB20IQwkUUpCLaLJiMcjfg-OghhBQA0IzBB96_WNwGr2mBXd9a3Tak619RY93hdu0_rgyrxUvVl43Gw3tmABzS4qi17nDd1bfPOGmyaSrk6HKK9QpXBHm33FD3fXC8vb6P5w-zu8nwe5ZSzLkpjJrTRVBVa5FwMoRXRNilswg1Qk6sUQFCiNeOaFmBZmmlgPCNxkhooCjpFJ5u7rW8-1jZ0ctWsfT1YyjgeygGBZCCRDSkfKgZvC9l6VynfSwJy_Jr887VBE200LnT260eg_LsUCU24FLNHebHgi8UVe5HxwKdbD1Vp78yb_U3yv8s3pnB9hg</recordid><startdate>200507</startdate><enddate>200507</enddate><creator>COSTAKIS, GEORGE</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200507</creationdate><title>Zeros and interpolation by universal Taylor series on simply connected domains</title><author>COSTAKIS, GEORGE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-8246bdb3afb6c56105a1be7fe75d03dca800631bb45b3f0e489b04591278d0ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COSTAKIS, GEORGE</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COSTAKIS, GEORGE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zeros and interpolation by universal Taylor series on simply connected domains</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>2005-07</date><risdate>2005</risdate><volume>139</volume><issue>1</issue><spage>149</spage><epage>159</epage><pages>149-159</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>By investigating the relation between growth and value distribution A. Melas established a qualitative version of a Picard type theorem for universal Taylor series, that is: every universal Taylor series on the open unit disk $D$, assumes every complex value with at most one exception on infinite subsets of $D$ that approach the boundary of $D$ rather slowly. On the other hand, we show that there are universal Taylor series on $D$ such that the infinite subset of $D$ on which exactly one value is assumed, can approach the boundary of $D$ arbitrarily fast. Hence in view of Melas' work our result is the best possible. We also study the problem of interpolation by universal Taylor series.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004105008406</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0041 |
ispartof | Mathematical proceedings of the Cambridge Philosophical Society, 2005-07, Vol.139 (1), p.149-159 |
issn | 0305-0041 1469-8064 |
language | eng |
recordid | cdi_proquest_journals_220000107 |
source | Cambridge University Press |
title | Zeros and interpolation by universal Taylor series on simply connected domains |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zeros%20and%20interpolation%20by%20universal%20Taylor%20series%20on%20simply%20connected%20domains&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=COSTAKIS,%20GEORGE&rft.date=2005-07&rft.volume=139&rft.issue=1&rft.spage=149&rft.epage=159&rft.pages=149-159&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004105008406&rft_dat=%3Cproquest_cross%3E1402681251%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-8246bdb3afb6c56105a1be7fe75d03dca800631bb45b3f0e489b04591278d0ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=220000107&rft_id=info:pmid/&rft_cupid=10_1017_S0305004105008406&rfr_iscdi=true |