Loading…

Possibility of useful mechanical energy from noise: the solitary wave train problem in the granular chain revisited

A momentary velocity perturbation at an edge of a granular chain with the grains barely touching one another and held between fixed walls propagates as a solitary wave whereas a long lived perturbation, even if it is noisy, ends up as a solitary wave train. Here, we extend our earlier work but with...

Full description

Saved in:
Bibliographic Details
Published in:Granular matter 2018-08, Vol.20 (3), p.1-10, Article 42
Main Authors: Chakravarty, Sourish, Sen, Surajit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A momentary velocity perturbation at an edge of a granular chain with the grains barely touching one another and held between fixed walls propagates as a solitary wave whereas a long lived perturbation, even if it is noisy, ends up as a solitary wave train. Here, we extend our earlier work but with a force instead of a velocity perturbation. Such a perturbation can propagate an extended compression front into the system. We find that a snapshot of the distribution of grain compressions in the solitary wave train shows parabolic as opposed to an approximate exponential decay with the leading edge at the front of the traveling pulse and the trailing edge following it. The system’s time evolution depends on three independent parameters-the material properties, duration of perturbation and the characteristic amplitude of the perturbation. Hence, the coefficients used to describe the parabolic decay of the grain compressions in the solitary wave train depend on these three parameters. When a random finite duration force perturbation is applied we find that the randomness is smoothed out by the system, which in turn suggests that long granular chains (or equivalent systems, such as circuits) can be potentially useful in converting random noisy signals to organized solitary wave trains and hence to potentially usable energy.
ISSN:1434-5021
1434-7636
DOI:10.1007/s10035-018-0811-4