Loading…

Single- and double-beam reflectarrays for Ka band communication

The Ka band has found applications in satellite, and radar communications. It is also expected that this band will be utilized for 5G applications. This paper presents single- and double-beam microstrip reflectarrays with single layer and compact size for Ka band communications at 28 GHz. Three diff...

Full description

Saved in:
Bibliographic Details
Published in:Sadhana (Bangalore) 2019-05, Vol.44 (5), p.1-13, Article 106
Main Authors: ELSHARKAWY, RANIA, HINDY, MOATAZA, SEBAK, A -R, SALEEB, ADEL, EL-RABAIE, EL-SAYED M, RAGHEB, AMR, ASHRAF, MUHAMMAD, ALSHEBEILI, SALEH
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Ka band has found applications in satellite, and radar communications. It is also expected that this band will be utilized for 5G applications. This paper presents single- and double-beam microstrip reflectarrays with single layer and compact size for Ka band communications at 28 GHz. Three different unit cells are investigated in this paper. Single- and double-beam reflectarrays are investigated. The reflectarrays are designed at 28 GHz with a physical size of 10λ × 10λ. A pyramidal horn antenna is used for the feeding purpose. The focal-length-to-diameter (F/D) ratio is equal to one. Two different scenarios for single-beam reflectarrays are presented: one with a broadside direction and the other with a 10° tilt angle. The simulation results show that for the broadside single-beam scenario, it is possible to achieve a gain up to 28.5 dB, and a 1-dB gain-bandwidth up to 30.7%. On the other hand, the presented reflectarray for the single-beam design at 10° tilt angle gives a gain of about 26.4 dB, a side lobe level (SLL) of about −15.6 dB, and a 19.3% gain-bandwidth. For the double-beam reflectarray, four different designs at different angles of 5°, 10°, 15°, and 20° have been simulated and compared. Moreover, the simulation results on the double-beam reflectarray show that the double-beam design at 10° is better from the gain and SLL perspectives. Two prototypes for broadside single-beam reflectarrays have been fabricated and measured. The measurement results show a good match with the simulation results. Gain flatness is guaranteed for both the simulated and measured results over the band of interest.
ISSN:0256-2499
0973-7677
DOI:10.1007/s12046-019-1109-x