Loading…

Localization transitions and mobility edges in coupled Aubry-André chains

We study the localization transitions for coupled one-dimensional lattices with quasiperiodic potential. In addition to the localized and extended phases, there is an intermediate mixed phase that can be easily explained decoupling the system so as to deal with effective uncoupled Aubry-André chains...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2019-02, Vol.99 (5), p.054211, Article 054211
Main Authors: Rossignolo, M., Dell'Anna, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the localization transitions for coupled one-dimensional lattices with quasiperiodic potential. In addition to the localized and extended phases, there is an intermediate mixed phase that can be easily explained decoupling the system so as to deal with effective uncoupled Aubry-André chains with different transition points. We clarify, therefore, the origin of such an intermediate phase, finding the conditions for getting a uniquely defined mobility edge for such coupled systems. Finally, we consider many coupled chains with an energy shift that compose an extension of the Aubry-André model in two dimensions. We study the localization behavior in this case comparing the results with those obtained for a truly aperiodic two-dimensional (2D) Aubry-André model, with quasiperiodic potentials in any directions, and the 2D Anderson model.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.99.054211